Qian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3424642/publications.pdf Version: 2024-02-01

OIAN WANC

#	Article	IF	CITATIONS
1	Bioconjugation by Copper(I)-Catalyzed Azide-Alkyne [3 + 2] Cycloaddition. Journal of the American Chemical Society, 2003, 125, 3192-3193.	6.6	1,536
2	Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature, 2005, 434, 55-59.	13.7	912
3	A Fluorogenic 1,3-Dipolar Cycloaddition Reaction of 3-Azidocoumarins and Acetylenesâ€. Organic Letters, 2004, 6, 4603-4606.	2.4	641
4	Icosahedral Virus Particles as Addressable Nanoscale Building Blocks. Angewandte Chemie - International Edition, 2002, 41, 459-462.	7.2	365
5	Fluorogenic click reaction. Chemical Society Reviews, 2010, 39, 1233-1239.	18.7	284
6	Fluorescence Visualization of Newly Synthesized Proteins in Mammalian Cells. Angewandte Chemie - International Edition, 2006, 45, 7364-7367.	7.2	277
7	Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373, 1523-1527.	6.0	274
8	Natural Supramolecular Building Blocks. Chemistry and Biology, 2002, 9, 805-811.	6.2	245
9	Self-Assembly and Cross-Linking of Bionanoparticles at Liquid-Liquid Interfaces. Angewandte Chemie - International Edition, 2005, 44, 2420-2426.	7.2	238
10	Selective Dye-Labeling of Newly Synthesized Proteins in Bacterial Cells. Journal of the American Chemical Society, 2005, 127, 14150-14151.	6.6	235
11	Hybrid Virusâ^'Polymer Materials. 1. Synthesis and Properties of PEG-Decorated Cowpea Mosaic Virus. Biomacromolecules, 2003, 4, 472-476.	2.6	218
12	Robust Nonenzymatic Hybrid Nanoelectrocatalysts for Signal Amplification toward Ultrasensitive Electrochemical Cytosensing. Journal of the American Chemical Society, 2014, 136, 2288-2291.	6.6	196
13	Surface Modification of Tobacco Mosaic Virus with "Click―Chemistry. ChemBioChem, 2008, 9, 519-523.	1.3	193
14	Head-to-Tail Peptide Cyclodimerization by Copper-Catalyzed Azide-Alkyne Cycloaddition. Angewandte Chemie - International Edition, 2005, 44, 2215-2220.	7.2	191
15	Synthesis of Nano/Microstructures at Fluid Interfaces. Angewandte Chemie - International Edition, 2010, 49, 10052-10066.	7.2	188
16	Plasmodium Circumsporozoite Protein Promotes the Development of the Liver Stages of the Parasite. Cell, 2007, 131, 492-504.	13.5	187
17	Natural Supramolecular Building Blocks. Chemistry and Biology, 2002, 9, 813-819.	6.2	183
18	Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chemical Society Reviews, 2012, 41, 6178.	18.7	168

#	Article	IF	CITATIONS
19	Nanopatterning the Chemospecific Immobilization of Cowpea Mosaic Virus Capsid. Nano Letters, 2003, 3, 883-886.	4.5	163
20	Systemic trafficking of plant virus nanoparticles in mice via the oral route. Virology, 2005, 343, 224-235.	1.1	162
21	Chemical Modification of M13 Bacteriophage and Its Application in Cancer Cell Imaging. Bioconjugate Chemistry, 2010, 21, 1369-1377.	1.8	159
22	Biological Templated Synthesis of Water-Soluble Conductive Polymeric Nanowires. Nano Letters, 2007, 7, 3729-3733.	4.5	158
23	Influence of Surface Topographical Cues on the Differentiation of Mesenchymal Stem Cells in Vitro. ACS Biomaterials Science and Engineering, 2016, 2, 142-151.	2.6	157
24	Synthesis and Characterization of Thermally Responsive Pluronic F127â^'Chitosan Nanocapsules for Controlled Release and Intracellular Delivery of Small Molecules. ACS Nano, 2010, 4, 6747-6759.	7.3	155
25	One-pot synthesis of triazole-linked glycoconjugates. Tetrahedron Letters, 2005, 46, 2331-2336.	0.7	147
26	Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2, 137-149.	1.7	140
27	Regulation of osteogenic differentiation of rat bone marrow stromal cells on 2D nanorod substrates. Biomaterials, 2010, 31, 1732-1741.	5.7	128
28	Novel H2S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages. Biomaterials, 2019, 222, 119398.	5.7	126
29	Thermally Controlled Release of Anticancer Drug from Self-Assembled Î ³ -Substituted Amphiphilic Poly(ε-caprolactone) Micellar Nanoparticles. Biomacromolecules, 2012, 13, 2163-2173.	2.6	124
30	Rapid Kinetic Studies Link Tetrahydrobiopterin Radical Formation to Heme-dioxy Reduction and Arginine Hydroxylation in Inducible Nitric-oxide Synthase. Journal of Biological Chemistry, 2001, 276, 315-319.	1.6	119
31	Synthesis and anti-angiogenesis activity of coumarin derivatives. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4596-4599.	1.0	118
32	Viruses and virus-like protein assemblies—Chemically programmable nanoscale building blocks. Nano Research, 2009, 2, 349-364.	5.8	115
33	Characterization of Sparstolonin B, a Chinese Herb-derived Compound, as a Selective Toll-like Receptor Antagonist with Potent Anti-inflammatory Properties. Journal of Biological Chemistry, 2011, 286, 26470-26479.	1.6	111
34	Recent development of small molecular specific inhibitor of protein tyrosine phosphatase 1B. Medicinal Research Reviews, 2007, 27, 553-573.	5.0	108
35	Neuronal Nitric-oxide Synthase Mutant (Ser-1412 → Asp) Demonstrates Surprising Connections between Heme Reduction, NO Complex Formation, and Catalysis. Journal of Biological Chemistry, 2001, 276, 1244-1252.	1.6	101
36	A fluorogenic â€~click' reaction of azidoanthracene derivatives. Tetrahedron, 2008, 64, 2906-2914.	1.0	101

#	Article	IF	CITATIONS
37	Self-Assembly of Tobacco Mosaic Virus at Oil/Water Interfaces. Langmuir, 2009, 25, 4979-4987.	1.6	100
38	A hydrogen sulfide-releasing alginate dressing for effective wound healing. Acta Biomaterialia, 2020, 104, 85-94.	4.1	99
39	The synergistic effects of multivalent ligand display and nanotopography on osteogenic differentiation of rat bone marrow stem cells. Biomaterials, 2010, 31, 5813-5824.	5.7	97
40	Selfâ€Assembly of Rodlike Bioâ€nanoparticles in Capillary Tubes. Angewandte Chemie - International Edition, 2010, 49, 868-872.	7.2	97
41	Highlights in Organic Chemistry Advances in 1,3-Dipolar Cycloaddition Reaction of Azides and Alkynes - A Prototype of "Click" Chemistry. Letters in Organic Chemistry, 2005, 2, 293-301.	0.2	96
42	Assembly of Tobacco Mosaic Virus into Fibrous and Macroscopic Bundled Arrays Mediated by Surface Aniline Polymerization. Langmuir, 2007, 23, 6719-6724.	1.6	95
43	Inhibition of amyloid-Î ² aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorganic and Medicinal Chemistry, 2011, 19, 2596-2602.	1.4	94
44	Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Letters, 2002, 43, 6545-6548.	0.7	86
45	Polyoxometalate–biomolecule conjugates: A new approach to create hybrid drugs for cancer therapeutics. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1462-1466.	1.0	86
46	Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chemical Communications, 2006, , 3019.	2.2	82
47	Icosahedral Virus Particles as Polyvalent Carbohydrate Display Platforms. ChemBioChem, 2003, 4, 1348-1351.	1.3	80
48	Oriented cell growth on self-assembled bacteriophage M13 thin films. Chemical Communications, 2008, , 5185.	2.2	78
49	Chemoselective derivatization of a bionanoparticle by click reaction and ATRP reaction. Chemical Communications, 2007, , 1453.	2.2	77
50	The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus. Biomaterials, 2008, 29, 4074-4081.	5.7	77
51	Electrospun Fibrous Scaffolds Promote Breast Cancer Cell Alignment and Epithelial–Mesenchymal Transition. Langmuir, 2012, 28, 2028-2034.	1.6	77
52	A MEMS affinity glucose sensor using a biocompatible glucose-responsive polymer. Sensors and Actuators B: Chemical, 2009, 140, 603-609.	4.0	76
53	M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles. Nano Research, 2011, 4, 483-493.	5.8	74
54	Cowpea Mosaic Virus Capsid: A Promising Carrier for the Development of Carbohydrate Based Antitumor Vaccines. Chemistry - A European Journal, 2008, 14, 4939-4947.	1.7	73

#	Article	IF	CITATIONS
55	Tobacco Mosaic Virus as a New Carrier for Tumor Associated Carbohydrate Antigens. Bioconjugate Chemistry, 2012, 23, 1694-1703.	1.8	72
56	Copper-catalyzed ortho-acylation of phenols with aryl aldehydes and its application in one-step preparation of xanthones. Chemical Communications, 2012, 48, 11256.	2.2	71
57	Development of Boronic Acid Grafted Random Copolymer Sensing Fluid for Continuous Glucose Monitoring. Biomacromolecules, 2009, 10, 113-118.	2.6	68
58	Expansion of breast cancer stem cells with fibrous scaffolds. Integrative Biology (United Kingdom), 2013, 5, 768.	0.6	68
59	An acid catalyzed reversible ring-opening/ring-closure reaction involving a cyano-rhodamine spirolactam. Organic and Biomolecular Chemistry, 2013, 11, 1805.	1.5	68
60	Viruses and their potential in bioimaging and biosensing applications. Analyst, The, 2010, 135, 21-27.	1.7	67
61	Blue Fluorescent Antibodies as Reporters of Steric Accessibility in Virus Conjugates. Bioconjugate Chemistry, 2003, 14, 38-43.	1.8	66
62	Turnip Yellow Mosaic Virus as a Chemoaddressable Bionanoparticle. Bioconjugate Chemistry, 2007, 18, 852-859.	1.8	66
63	Interfacial Assembly of Turnip Yellow Mosaic Virus Nanoparticles. Langmuir, 2009, 25, 5168-5176.	1.6	65
64	Poly(2â€vinylpyridine)â€ <i>block</i> â€Poly(<i>ïµ</i> â€caprolactone) Single Crystals in Micellar Solution. Macromolecular Rapid Communications, 2013, 34, 1067-1071.	2.0	65
65	Novel H ₂ S Releasing Nanofibrous Coating for In Vivo Dermal Wound Regeneration. ACS Applied Materials & Interfaces, 2016, 8, 27474-27481.	4.0	64
66	Synthesis of hemicyanine dyes for â€ [~] click' bioconjugation. Tetrahedron Letters, 2005, 46, 1691-1695.	0.7	62
67	Prototype Protein Assembly as Scaffold for Time-Resolved Fluoroimmuno Assays. Journal of the American Chemical Society, 2007, 129, 7799-7806.	6.6	62
68	Design and synthesis of boronic-acid-labeled thymidine triphosphate for incorporation into DNA. Nucleic Acids Research, 2007, 35, 1222-1229.	6.5	61
69	Facile Method for Large Scale Alignment of One Dimensional Nanoparticles and Control over Myoblast Orientation and Differentiation. ACS Nano, 2013, 7, 8385-8396.	7.3	61
70	pH and Thermal Dual-Responsive Nanoparticles for Controlled Drug Delivery with High Loading Content. ACS Omega, 2017, 2, 3399-3405.	1.6	61
71	Pulling Genetic RNA out of Tobacco Mosaic Virus Using Single-Molecule Force Spectroscopy. Journal of the American Chemical Society, 2010, 132, 11036-11038.	6.6	59
72	Synthesis of triazolyl anthracene as a selective fluorescent chemosensor for the Cu(II) ion. Tetrahedron Letters, 2008, 49, 5293-5296.	0.7	58

#	Article	IF	CITATIONS
73	Porous Alginate Hydrogel Functionalized with Virus as Three-Dimensional Scaffolds for Bone Differentiation. Biomacromolecules, 2012, 13, 3949-3958.	2.6	58
74	Tryptophan 409 Controls the Activity of Neuronal Nitric-oxide Synthase by Regulating Nitric Oxide Feedback Inhibition. Journal of Biological Chemistry, 1999, 274, 26907-26911.	1.6	57
75	Functionalization of Polymer Microspheres Using Click Chemistry. Langmuir, 2009, 25, 4370-4376.	1.6	56
76	Biological thiols-triggered hydrogen sulfide releasing microfibers for tissue engineering applications. Acta Biomaterialia, 2015, 27, 205-213.	4.1	56
77	Nanoengineered Particles for Enhanced Intraâ€Articular Retention and Delivery of Proteins. Advanced Healthcare Materials, 2014, 3, 1562-1567.	3.9	55
78	Effects of Peptide Immobilization Sites on the Structure and Activity of Surface-Tethered Antimicrobial Peptides. Journal of Physical Chemistry C, 2015, 119, 7146-7155.	1.5	55
79	A MEMS viscometric sensor for continuous glucose monitoring. Journal of Micromechanics and Microengineering, 2007, 17, 2528-2537.	1.5	54
80	HOXB7 Promotes Malignant Progression by Activating the TGFÎ ² Signaling Pathway. Cancer Research, 2015, 75, 709-719.	0.4	54
81	Nrf2 enhances myocardial clearance of toxic ubiquitinated proteins. Journal of Molecular and Cellular Cardiology, 2014, 72, 305-315.	0.9	53
82	Molecular Basis for Hyperactivity in Tryptophan 409 Mutants of Neuronal NO Synthase. Journal of Biological Chemistry, 2000, 275, 17434-17439.	1.6	50
83	Closed-Packed Colloidal Assemblies from Icosahedral Plant Virus and Polymer. Chemistry of Materials, 2009, 21, 1046-1050.	3.2	50
84	Guiding plant virus particles to integrin-displaying cells. Nanoscale, 2012, 4, 3698.	2.8	50
85	7-Diethylamino-3(2′-benzoxazolyl)-coumarin is a novel microtubule inhibitor with antimitotic activity in multidrug resistant cancer cells. Biochemical Pharmacology, 2009, 77, 1773-1779.	2.0	49
86	The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule. Nanotechnology, 2009, 20, 275101.	1.3	49
87	Core/Shell Biocomposites from the Hierarchical Assembly of Bionanoparticles and Polymer. Small, 2008, 4, 1624-1629.	5.2	48
88	Tobacco mosaic virus templated synthesis of one dimensional inorganic–polymer hybrid fibres. Journal of Materials Chemistry, 2009, 19, 2841.	6.7	48
89	Emodin attenuates systemic and liver inflammation in hyperlipidemic mice administrated with lipopolysaccharides. Experimental Biology and Medicine, 2014, 239, 1025-1035.	1.1	48
90	Bacteriophage M13 as a scaffold for preparing conductive polymeric composite fibers. Nano Research, 2008, 1, 235-241.	5.8	47

#	Article	IF	CITATIONS
91	Electrospinning fabrication, structural and mechanical characterization of rod-like virus-based composite nanofibers. Journal of Materials Chemistry, 2011, 21, 8550.	6.7	47
92	Self-assembly of viral particles. Current Opinion in Colloid and Interface Science, 2011, 16, 441-450.	3.4	46
93	A plant virus substrate induces early upregulation of BMP2 for rapid bone formation. Integrative Biology (United Kingdom), 2012, 4, 651.	0.6	46
94	Promotion of In Vitro Chondrogenesis of Mesenchymal Stem Cells Using In Situ Hyaluronic Hydrogel Functionalized with Rod-Like Viral Nanoparticles. Biomacromolecules, 2016, 17, 1930-1938.	2.6	46
95	Effect of Roughness on <i>in Situ</i> Biomineralized CaP-Collagen Coating on the Osteogenesis of Mesenchymal Stem Cells. Langmuir, 2016, 32, 1808-1817.	1.6	46
96	Separating membrane and surface tension contributions in Pickering droplet deformation. Soft Matter, 2008, 4, 2259.	1.2	44
97	Biomolecular Assembly of Thermoresponsive Superlattices of the Tobacco Mosaic Virus with Large Tunable Interparticle Distances. Angewandte Chemie - International Edition, 2013, 52, 6638-6642.	7.2	44
98	Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles. Materials Science and Engineering C, 2020, 111, 110768.	3.8	43
99	A Combined Experimental and Computational Study of the Substituent Effect on Micellar Behavior of γ-Substituted Thermoresponsive Amphiphilic Poly(ε-caprolactone)s. Macromolecules, 2013, 46, 4829-4838.	2.2	41
100	Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy. Scientific Reports, 2013, 3, 2473.	1.6	41
101	RGD-conjugated rod-like viral nanoparticles on 2D scaffold improve bone differentiation of mesenchymal stem cells. Frontiers in Chemistry, 2014, 2, 31.	1.8	41
102	Facile Co-Assembly Process to Generate Core–Shell Nanoparticles with Functional Protein Corona. Biomacromolecules, 2014, 15, 948-956.	2.6	41
103	Controlled assembly of rodlike viruses with polymers. Chemical Communications, 2009, , 2869.	2.2	40
104	Plant virus incorporated hydrogels as scaffolds for tissue engineering possess low immunogenicity <i>in vivo</i> . Journal of Biomedical Materials Research - Part A, 2015, 103, 887-895.	2.1	40
105	Nanostructured wrinkled surfaces for templating bionanoparticles—controlling and quantifying the degree of order. Faraday Discussions, 2009, 143, 143.	1.6	39
106	Tobacco mosaic virus based thin film sensor for detection of volatile organic compounds. Journal of Materials Chemistry, 2010, 20, 5715.	6.7	39
107	Mutant Plant Viruses with Cell Binding Motifs Provide Differential Adhesion Strengths and Morphologies. Biomacromolecules, 2012, 13, 422-431.	2.6	39
108	A new probe using hybrid virus-dye nanoparticles for near-infrared fluorescence tomography. Optics Communications, 2005, 255, 366-374.	1.0	37

#	Article	IF	CITATIONS
109	Self-Assembly of Virus Particles on Flat Surfaces via Controlled Evaporation. Langmuir, 2011, 27, 1398-1402.	1.6	37
110	Altering the landscape of viruses and bionanoparticles. Organic and Biomolecular Chemistry, 2011, 9, 6189.	1.5	37
111	Aligned Electroactive TMV Nanofibers as Enabling Scaffold for Neural Tissue Engineering. Biomacromolecules, 2015, 16, 3466-3472.	2.6	37
112	Synthesis and biological activity of (+)-hedychilactone A and its analogs from (+)-sclareolide. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1656-1659.	1.0	36
113	Ferritin–Polymer Conjugates: Grafting Chemistry and Integration into Nanoscale Assemblies. Advanced Functional Materials, 2010, 20, 3603-3612.	7.8	36
114	Dual stimuli-responsive supramolecular hydrogel of bionanoparticles and hyaluronan. Polymer Chemistry, 2014, 5, 6754-6760.	1.9	35
115	Effect of Interfacial Interaction on the Cross-Sectional Morphology of Tobacco Mosaic Virus Using GISAXS. Langmuir, 2007, 23, 11157-11163.	1.6	34
116	Chemoselective Modification of Turnip Yellow Mosaic Virus by Cu(I) Catalyzed Azideâ^'Alkyne 1,3-Dipolar Cycloaddition Reaction and Its Application in Cell Binding. Bioconjugate Chemistry, 2011, 22, 58-66.	1.8	34
117	A supramolecular strategy to assemble multifunctional viral nanoparticles. Chemical Communications, 2013, 49, 9678.	2.2	34
118	Tobacco Mosaic Virus Functionalized Alginate Hydrogel Scaffolds for Bone Regeneration in Rats with Cranial Defect. ACS Biomaterials Science and Engineering, 2016, 2, 606-615.	2.6	34
119	Nanotopographical Cues Mediate Osteogenesis of Stem Cells on Virus Substrates through BMP-2 Intermediate. Nano Letters, 2019, 19, 8372-8380.	4.5	33
120	A Facile Route for the Regioselective Deacetylation of Peracetylated Carbohydrates at Anomeric Position. Letters in Organic Chemistry, 2006, 3, 35-38.	0.2	32
121	Synthesis and characterization of bionanoparticle—Silica composites and mesoporous silica with large pores. Nano Research, 2009, 2, 474-483.	5.8	32
122	Visualizing Cell Extracellular Matrix (ECM) Deposited by Cells Cultured on Aligned Bacteriophage M13 Thin Films. Langmuir, 2011, 27, 9490-9496.	1.6	32
123	A Capacitive MEMS Viscometric Sensor for Affinity Detection of Glucose. Journal of Microelectromechanical Systems, 2009, 18, 1246-1254.	1.7	30
124	Virus-templated FRET platform for the rational design of ratiometric fluorescent nanosensors. Chemical Communications, 2015, 51, 10190-10193.	2.2	30
125	Self-Assembly and Cross-Linking of Bionanoparticles at Liquid-Liquid Interfaces. Angewandte Chemie, 2005, 117, 2472-2478.	1.6	29
126	Nanomechanical characterization of polyaniline coated tobacco mosaic virus nanotubes. Journal of Biomedical Materials Research - Part A, 2008, 87A, 8-14.	2.1	28

#	Article	IF	CITATIONS
127	Polyvalent display of RGD motifs on turnip yellow mosaic virus for enhanced stem cell adhesion and spreading. Acta Biomaterialia, 2012, 8, 2978-2985.	4.1	28
128	pH and enzyme dual-responsive release of hydrogen sulfide for disc degeneration therapy. Journal of Materials Chemistry B, 2019, 7, 611-618.	2.9	28
129	Synthesis of selfâ€assembled ILâ€1Raâ€presenting nanoparticles for the treatment of osteoarthritis. Journal of Biomedical Materials Research - Part A, 2016, 104, 595-599.	2.1	27
130	Development of Core–Shell Nanostructures by In Situ Assembly of Pyridine-Grafted Diblock Copolymer and Transferrin for Drug Delivery Applications. Biomacromolecules, 2016, 17, 2321-2328.	2.6	27
131	Influence of Cross-Linkers on the <i>in Vitro</i> Chondrogenesis of Mesenchymal Stem Cells in Hyaluronic Acid Hydrogels. ACS Applied Materials & Interfaces, 2017, 9, 3318-3329.	4.0	27
132	Fluorogenic "click―reaction for labeling and detection of DNA in proliferating cells. BioTechniques, 2010, 49, 525-527.	0.8	26
133	Multivalent Ligand Displayed on Plant Virus Induces Rapid Onset of Bone Differentiation. Molecular Pharmaceutics, 2012, 9, 2121-2125.	2.3	26
134	Controlled Assembly of Protein in Glass Capillary. Langmuir, 2010, 26, 12803-12809.	1.6	25
135	Development of phenylboronic acid-functionalized nanoparticles for emodin delivery. Journal of Materials Chemistry B, 2015, 3, 3840-3847.	2.9	25
136	Synthesis of PAMAM dendrimer-based fast cross-linking hydrogel for biofabrication. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 669-682.	1.9	25
137	Mammaglobin as a potential molecular target for breast cancer drug delivery. Cancer Cell International, 2009, 9, 8.	1.8	24
138	A dielectric affinity microbiosensor. Applied Physics Letters, 2010, 96, 033701.	1.5	24
139	Charge-transfer interaction mediated organogels from 18β-glycyrrhetinic acid appended pyrene. Beilstein Journal of Organic Chemistry, 2013, 9, 2877-2885.	1.3	24
140	Virus Nanoparticles Mediated Osteogenic Differentiation of Bone Derived Mesenchymal Stem Cells. Advanced Science, 2015, 2, 1500026.	5.6	24
141	Tobacco Mosaic Virus with Peroxidase-Like Activity for Cancer Cell Detection through Colorimetric Assay. Molecular Pharmaceutics, 2018, 15, 2946-2953.	2.3	24
142	Comparative Study of Inhibition at Multiple Stages of Amyloid-Î ² Self-Assembly Provides Mechanistic Insight. Molecular Pharmacology, 2009, 76, 405-413.	1.0	23
143	Selfâ€Assembly of Pyridiniumâ€Functionalized Anthracenes: Molecularâ€Skeletonâ€Directed Formation of Microsheets and Microtubes. Chemistry - A European Journal, 2014, 20, 7603-7607.	1.7	23
144	Metal ion detection using a fluorogenic â€ [~] click' reaction. Tetrahedron Letters, 2009, 50, 7032-7034.	0.7	22

#	Article	IF	CITATIONS
145	Structure and interaction in 2D assemblies of tobacco mosaic viruses. Soft Matter, 2009, 5, 4951.	1.2	22
146	A hydrogel-based glucose affinity microsensor. Sensors and Actuators B: Chemical, 2016, 237, 992-998.	4.0	22
147	Shear flow induced long-range ordering of rod-like viral nanoparticles within hydrogel. Colloids and Surfaces B: Biointerfaces, 2017, 158, 620-626.	2.5	22
148	Structural characterization using the multiple scattering effects in grazing-incidence small-angle X-ray scattering. Journal of Applied Crystallography, 2008, 41, 134-142.	1.9	21
149	A novel rearrangement of fluorescent human thymidylate synthase inhibitor analogues in ESI tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 2010, 21, 403-410.	1.2	21
150	Systematic approach to electrostatically induced 2D crystallization of nanoparticles at liquid interfaces. Soft Matter, 2011, 7, 939-945.	1.2	21
151	A differential dielectric affinity glucose sensor. Lab on A Chip, 2014, 14, 294-301.	3.1	21
152	Virusâ€based scaffolds for tissue engineering applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 534-547.	3.3	21
153	N-Terminal Derivatization-Assisted Identification of Individual Amino Acids Using a Biological Nanopore Sensor. ACS Sensors, 2020, 5, 1707-1716.	4.0	21
154	Controlled evaporative self-assembly of poly(3-hexylthiophene) monitored with confocal polarized Raman spectroscopy. Physical Chemistry Chemical Physics, 2012, 14, 16286.	1.3	20
155	Artificial Cellulosome Complex from the Selfâ€Assembly of Niâ€NTAâ€Functionalized Polymeric Micelles and Cellulases. ChemBioChem, 2019, 20, 1394-1399.	1.3	20
156	Enabling nanopore technology for sensing individual amino acids by a derivatization strategy. Journal of Materials Chemistry B, 2020, 8, 6792-6797.	2.9	20
157	Correlation of chemical reactivity of Nudaurelia capensis ? virus with a pH-induced conformational change. Chemical Communications, 2003, , 2770.	2.2	19
158	Construction of glycoprotein multilayers using the layer-by-layer assembly technique. Journal of Materials Chemistry, 2012, 22, 17954.	6.7	19
159	Tuning the optical properties of BODIPY dye through Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Science China Chemistry, 2012, 55, 125-130.	4.2	19
160	A MEMS differential viscometric sensor for affinity glucose detection in continuous glucose monitoring. Journal of Micromechanics and Microengineering, 2013, 23, 055020.	1.5	19
161	Thiol-ene crosslinking polyamidoamine dendrimer-hyaluronic acid hydrogel system for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 743-757.	1.9	19
162	Single-Molecule Force Spectroscopy Study on the Mechanism of RNA Disassembly in Tobacco Mosaic Virus. Biophysical Journal, 2013, 105, 2790-2800.	0.2	18

#	Article	IF	CITATIONS
163	Surface patterned hydrogel film as a flexible scaffold for 2D and 3D cell co-culture. RSC Advances, 2016, 6, 61185-61189.	1.7	17
164	Polymer–Protein Core–Shell Nanoparticles for Enhanced Antigen Immunogenicity. ACS Macro Letters, 2017, 6, 442-446.	2.3	16
165	Enhanced P450 fatty acid decarboxylase catalysis by glucose oxidase coupling and co-assembly for biofuel generation. Bioresource Technology, 2020, 311, 123538.	4.8	16
166	Polymer-virus core-shell structures prepared via co-assembly and template synthesis methods. Science China Chemistry, 2010, 53, 71-77.	4.2	15
167	Self-Assembly of Rodlike Virus to Superlattices. Langmuir, 2013, 29, 12777-12784.	1.6	15
168	Charge-transfer interactions for the fabrication of multifunctional viral nanoparticles. Chemical Communications, 2014, 50, 14125-14128.	2.2	15
169	Self-assembly of large-scale P3HT patterns by confined evaporation in the capillary tube. RSC Advances, 2015, 5, 20491-20497.	1.7	15
170	Development of Novel Glucose Sensing Fluids with Potential Application to Microelectromechanical Systems-Based Continuous Glucose Monitoring. Journal of Diabetes Science and Technology, 2008, 2, 1066-1074.	1.3	14
171	A Hierarchical Assembly Process to Engineer a Hydrophobic Core for Virusâ€like Particles. Angewandte Chemie - International Edition, 2010, 49, 10048-10050.	7.2	14
172	Nonionic Block Copolymers Assemble on the Surface of Protein Bionanoparticle. Langmuir, 2012, 28, 11957-11961.	1.6	14
173	Harnessing P450 Enzyme for Biotechnology and Synthetic Biology. ChemBioChem, 2022, 23, .	1.3	14
174	Breast tumour initiating cell fate is regulated by microenvironmental cues from an extracellular matrix. Integrative Biology (United Kingdom), 2012, 4, 897.	0.6	13
175	Crystallization, structural diversity and anisotropy effects in 2D arrays of icosahedral viruses. Soft Matter, 2013, 9, 9633.	1.2	13
176	Adhesive peptides conjugated PAMAM dendrimer as a coating polymeric material enhancing cell responses. Chinese Chemical Letters, 2016, 27, 1473-1478.	4.8	13
177	Selfâ€Assembly of Pyridiniumâ€Tailored Anthracene Amphiphiles into Supramolecular Hydrogels. Chemistry - an Asian Journal, 2014, 9, 2880-2884.	1.7	12
178	Chiral Assemblies from an Achiral Pyridiniumâ€Tailored Anthracene. Chemistry - A European Journal, 2017, 23, 1422-1426.	1.7	12
179	Self-assembled supramolecular systems for bone engineering applications. Current Opinion in Colloid and Interface Science, 2018, 35, 104-111.	3.4	12
180	Enzyme Immobilization on a Delignified Bamboo Scaffold as a Green Hierarchical Bioreactor. ACS Sustainable Chemistry and Engineering, 2022, 10, 6244-6254.	3.2	12

#	Article	IF	CITATIONS
181	Characterization of horse spleen apoferritin reactive lysines by MALDI-TOF mass spectrometry combined with enzymatic digestion. Bioorganic Chemistry, 2008, 36, 255-260.	2.0	11
182	Synthesis and Development of Poly(N-Hydroxyethyl Acrylamide)-Ran-3-Acrylamidophenylboronic Acid Polymer Fluid for Potential Application in Affinity Sensing of Glucose. Journal of Diabetes Science and Technology, 2011, 5, 1060-1067.	1.3	11
183	Dual responsive supramolecular amphiphiles: guest molecules dictate the architecture of pyridinium-tailored anthracene assemblies. Organic and Biomolecular Chemistry, 2014, 12, 4820-4823.	1.5	11
184	A MEMS Dielectric Affinity Glucose Biosensor. Journal of Microelectromechanical Systems, 2014, 23, 14-20.	1.7	11
185	Genetically Engineered Plant Viral Nanoparticles Direct Neural Cells Differentiation and Orientation. Langmuir, 2015, 31, 9402-9409.	1.6	11
186	Enhanced Bone Defect Repair by Polymeric Substitute Fillers of MultiArm Polyethylene Glycol rosslinked Hyaluronic Acid Hydrogels. Macromolecular Bioscience, 2019, 19, e1900021.	2.1	11
187	Role of electrostatic interactions in two-dimensional self-assembly of tobacco mosaic viruses on cationic lipid monolayers. Journal of Colloid and Interface Science, 2011, 358, 497-505.	5.0	10
188	Revisit of a series of ICT fluorophores: skeletal characterization, structural modification, and spectroscopic behavior. Tetrahedron, 2014, 70, 5872-5877.	1.0	10
189	Development of Large-Scale Size-Controlled Adult Pancreatic Progenitor Cell Clusters by an Inkjet-Printing Technique. ACS Applied Materials & Interfaces, 2015, 7, 11624-11630.	4.0	10
190	Upregulation of osteogenesis of mesenchymal stem cells with virus-based thin films. Nanotheranostics, 2018, 2, 42-58.	2.7	10
191	Microsheets assembled from pyridinium-tailored anthracenes. Tetrahedron, 2014, 70, 6651-6655.	1.0	9
192	Self-assembly of anisotropic tobacco mosaic virus nanoparticles on gold substrate. Science China Chemistry, 2011, 54, 137-143.	4.2	7
193	<i>In Vivo</i> Virus-Based Macrofluorogenic Probes Target Azide-Labeled Surface Glycans in MCF-7 Breast Cancer Cells. Molecular Pharmaceutics, 2013, 10, 43-50.	2.3	7
194	Enhancing Antibody Response against Small Molecular Hapten with Tobacco Mosaic Virus as a Polyvalent Carrier. ChemBioChem, 2015, 16, 1279-1283.	1.3	7
195	Large-scale highly ordered hierarchical structures of conjugated polymer via self-assembly from mixed solvents. RSC Advances, 2015, 5, 76472-76475.	1.7	7
196	Integration of poly(3-hexylthiophene) conductive stripe patterns with 3D tubular structures for tissue engineering applications. RSC Advances, 2016, 6, 72519-72524.	1.7	7
197	Nanopore Fabrication and Application as Biosensors in Neurodegenerative Diseases. Critical Reviews in Biomedical Engineering, 2020, 48, 29-62.	0.5	7
198	Crosslinking of viral nanoparticles with "clickable―fluorescent crosslinkers at the interface. Science China Chemistry, 2010, 53, 1287-1293.	4.2	6

#	Article	IF	CITATIONS
199	Viral nanoparticles as antigen carriers: influence of shape on humoral immune responses in vivo. RSC Advances, 2014, 4, 23017-23021.	1.7	6
200	Enhanced Arylamine <i>N</i> -Oxygenase Activity of Polymer–Enzyme Assemblies by Facilitating Electron-Transferring Efficiency. Biomacromolecules, 2018, 19, 918-925.	2.6	6
201	Automating Complex, Multistep Processes on a Single Robotic Platform to Generate Reproducible Phosphoproteomic Data. SLAS Discovery, 2020, 25, 277-286.	1.4	6
202	A capacitively based MEMS affinity glucose sensor. , 2009, , .		5
203	A biocompatible affinity MEMS sensor for continuous monitoring of glucose. , 2009, , .		5
204	Preparation of nanoporous polyimide thin films via layer-by-layer self-assembly of cowpea mosaic virus and poly(amic acid). Thin Solid Films, 2011, 519, 7712-7716.	0.8	5
205	Synthesis and electron microscopic analysis of the selfâ€assembly of polymer and ferritin coreâ€shell structures. Microscopy Research and Technique, 2011, 74, 636-641.	1.2	5
206	Dynamic 3D Patterning of Biochemical Cues by using Photoinduced Bioorthogonal Reactions. Angewandte Chemie - International Edition, 2012, 51, 4004-4005.	7.2	5
207	Continuous Monitoring of Glucose in Subcutaneous Tissue Using Microfabricated Differential Affinity Sensors. Journal of Diabetes Science and Technology, 2012, 6, 1436-1444.	1.3	4
208	Unlocking the 1,2,3â€Triazole Ring Using Mechanical Force. Angewandte Chemie - International Edition, 2012, 51, 2006-2007.	7.2	4
209	Incorporation of azide sugar analogue decreases tumorigenic potential of breast cancer cells by reducing cancer stem cell population. Science China Chemistry, 2013, 56, 279-285.	4.2	4
210	A dielectric affinity glucose microsensor using hydrogel-functionalized coplanar electrodes. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	4
211	Chemical modification of enveloped viruses for biomedical applications. Integrative Biology (United) Tj ETQq1 2	l 0.784314 0.6	rgBT /Overlo
212	Using Small Molecules to Enhance P450 OleT Enzyme Activity in Situ. Chemistry - A European Journal, 2021, 27, 8940-8945.	1.7	4
213	In vitro biological activities of the flexible and virus nanoparticle-decorated silk fibroin-based films. International Journal of Biological Macromolecules, 2022, 216, 437-445.	3.6	4
214	Chemical Conjugation of Cowpea Mosaic Viruses with Reactive HPMA-Based Polymers. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1669-1685.	1.9	3
215	One-step assembly of multi-layered structures with orthogonally oriented stripe-like patterns on the surface of a capillary tube. Physical Chemistry Chemical Physics, 2017, 19, 23719-23722.	1.3	3
216	Development of nanotubes coated with platinum nanodendrites using a virus as a template. Nanotechnology, 2020, 31, 015502.	1.3	3

#	Article	IF	CITATIONS
217	Nanopore sensing of $\hat{I}^3 \hat{a} \in c$ yclodextrin induced host $\hat{a} \in g$ uest interaction to reverse the binding of perfluorooctanoic acid to human serum albumin. Proteomics, 2022, 22, e2100058.	1.3	3
218	Selective Immobilization of Hisâ€Tagged Phosphomannose Isomerase on Ni Chelated Nanoparticles with Good Reusability and Activity. ChemBioChem, 2022, 23, .	1.3	3
219	Morphological Transformations and Electrochemical Properties of Hydrothermally Synthesized MnO2 Nanostructures. ECS Transactions, 2010, 33, 185-193.	0.3	2
220	Discrimination of colon cancer stem cells using noncanonical amino acid. Chemical Communications, 2012, 48, 9035.	2.2	2
221	Caged Peptides to Control Enzymatic Activity within Hydrogel Scaffolds. ChemBioChem, 2014, 15, 787-788.	1.3	2
222	Fabrication of Plant Virus-Based Thin Films to Modulate the Osteogenic Differentiation of Mesenchymal Stem Cells. Methods in Molecular Biology, 2018, 1776, 609-627.	0.4	2
223	Synthesis and Characterization of Tobacco Mosaic Virus Templated Polymeric Nanomaterials. ACS Symposium Series, 2008, , 369-385.	0.5	1
224	Assembly of Virus Particles and Virus-like Particles as Templates for Biomedical Applications. ACS Symposium Series, 2012, , 21-56.	0.5	1
225	Emulsions stabilized by mini cyclic proteins for bioactive compound delivery. RSC Advances, 2014, 4, 48000-48003.	1.7	1
226	Structure-based design, synthesis of novel probes for cytochrome P450 OleT. Chinese Chemical Letters, 2021, 32, 1466-1469.	4.8	1
227	A Fluorogenic 1,3-Dipolar Cycloaddition Reaction of 3-Azidocoumarins and Acetylenes ChemInform, 2005, 36, no.	0.1	0
228	Synthesis, Cellular Uptake, and Cytotoxicity of a Thermally Responsive Nanocapsule. , 2009, , .		0
229	A permittivity-based MEMS affinity glucose sensor with integrated temperature measurements. , 2010, , .		0
230	Lost history versus good science. Nature Chemistry, 2011, 3, 832-833.	6.6	0
231	Bionanoparticles. , 2008, , 386-396.		0