Easwaramoorthi Ramasamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3424587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Dye-Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes. ACS Applied Materials & Interfaces, 2009, 1, 1145-1149.	4.0	446
2	Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells. Electrochemistry Communications, 2008, 10, 1087-1089.	2.3	366
3	Sub-micrometer-sized Graphite As a Conducting and Catalytic Counter Electrode for Dye-sensitized Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 857-862.	4.0	243
4	Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chemical Communications, 2010, 46, 8600.	2.2	215
5	Nanocarbon counterelectrode for dye sensitized solar cells. Applied Physics Letters, 2007, 90, 173103.	1.5	203
6	Ordered Mesoporous SnO ₂ â^Based Photoanodes for High-Performance Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 22032-22037.	1.5	174
7	Performance variation of carbon counter electrode based dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2008, 92, 814-818.	3.0	145
8	Soft-Template Simple Synthesis of Ordered Mesoporous Titanium Nitride-Carbon Nanocomposite for High Performance Dye-Sensitized Solar Cell Counter Electrodes. Chemistry of Materials, 2012, 24, 1575-1582.	3.2	112
9	Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. Chemical Communications, 2010, 46, 2136.	2.2	109
10	Portable, parallel grid dye-sensitized solar cell module prepared by screen printing. Journal of Power Sources, 2007, 165, 446-449.	4.0	108
11	Highly Efficient and Durable Quantum Dot Sensitized ZnO Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode. Journal of Physical Chemistry C, 2011, 115, 22018-22024.	1.5	99
12	Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells. Carbon, 2010, 48, 3715-3720.	5.4	92
13	Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation. International Journal of Hydrogen Energy, 2011, 36, 5262-5270.	3.8	89
14	Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization. Renewable and Sustainable Energy Reviews, 2018, 82, 845-857.	8.2	83
15	Ordered mesoporous Zn-doped SnO2 synthesized by exotemplating for efficient dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 2529.	15.6	72
16	Carbon-nanofiber counter electrodes for quasi-solid state dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 10798-10805.	4.0	69
17	Grid type dye-sensitized solar cell module with carbon counter electrode. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194, 27-30.	2.0	68
18	Glass frit overcoated silver grid lines for nano-crystalline dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 133-137.	2.0	62

#	Article	IF	CITATIONS
19	Soft-template synthesized ordered mesoporous carbon counter electrodes for dye-sensitized solar cells. Carbon, 2010, 48, 4563-4565.	5.4	60
20	Robust mesocellular carbon foam counter electrode for quantum-dot sensitized solar cells. Electrochemistry Communications, 2011, 13, 34-37.	2.3	60
21	Dye-sensitized solar cells: Scale up and current–voltage characterization. Solar Energy Materials and Solar Cells, 2007, 91, 1676-1680.	3.0	59
22	Amorphous carbon as a flexible counter electrode for low cost and efficient dye sensitized solar cell. Renewable Energy, 2012, 41, 383-388.	4.3	56
23	Glass-to-glass encapsulation with ultraviolet light curable epoxy edge sealing for stable perovskite solar cells. Materials Letters, 2019, 250, 51-54.	1.3	51
24	Well-dispersed Pd3Pt1 alloy nanoparticles in large pore sized mesocellular carbon foam for improved methanol-tolerant oxygen reduction reaction. Carbon, 2011, 49, 1108-1117.	5.4	49
25	High performance broad band antireflective coatings using a facile synthesis of ink-bottle mesoporous MgF2 nanoparticles for solar applications. Solar Energy Materials and Solar Cells, 2017, 159, 204-211.	3.0	48
26	Effect of electrode geometry on the photovoltaic performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1448-1451.	3.0	39
27	Multi-Functionality of Macroporous TiO ₂ Spheres in Dye-Sensitized and Hybrid Heterojunction Solar Cells. Langmuir, 2014, 30, 3010-3018.	1.6	38
28	A simple method for producing mesoporous anatase TiO2 nanocrystals with elevated photovoltaic performance. Scripta Materialia, 2010, 62, 223-226.	2.6	31
29	Easy access to highly crystalline mesoporous transition-metal oxides with controllable uniform large pores by using block copolymers synthesized via atom transfer radical polymerization. Microporous and Mesoporous Materials, 2011, 143, 149-156.	2.2	29
30	Ordered Mesoporous Tungsten Suboxide Counter Electrode for Highly Efficient Iodineâ€Free Electrolyteâ€Based Dye‧ensitized Solar Cells. ChemSusChem, 2013, 6, 299-307.	3.6	26
31	Hydrothermally tailored anatase TiO 2 nanoplates with exposed {1 1 1} facets for highly efficient dye-sensitized solar cells. Solar Energy, 2017, 147, 202-208.	2.9	26
32	Prickly pear fruit extract as photosensitizer for dye-sensitized solar cell. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117686.	2.0	25
33	Vacancies induced enhancement in neodymium doped titania photoanodes based sensitized solar cells and photo-electrochemical cells. Solar Energy Materials and Solar Cells, 2021, 220, 110843.	3.0	24
34	Seed layer-assisted low temperature solution growth of 3D ZnO nanowall architecture for hybrid solar cells. Materials and Design, 2017, 116, 219-226.	3.3	22
35	Rapid (â^¼10 min) synthesis of single-crystalline, nanorice TiO2 mesoparticles with a high photovoltaic efficiency of above 8%. Chemical Communications, 2011, 47, 8572.	2.2	21
36	Room-temperature curable carbon cathode for hole-conductor free perovskite solar cells. Solar Energy, 2019, 187, 261-268.	2.9	20

#	Article	IF	CITATIONS
37	Effect of hole-transporting materials on the photovoltaic performance and stability of all-ambient-processed perovskite solar cells. Journal of Energy Chemistry, 2017, 26, 584-591.	7.1	19
38	¹¹⁹ Sn Mössbauer and Ferromagnetic Studies on Hierarchical Tin- and Nitrogen-Codoped TiO ₂ Microspheres with Efficient Photocatalytic Performance. Journal of Physical Chemistry C, 2017, 121, 6662-6673.	1.5	17
39	Hole-conductor free ambient processed mixed halide perovskite solar cells. Materials Letters, 2019, 245, 226-229.	1.3	17
40	Spray coated seed layer for scalable synthesis of aligned ZnO nanowire arrays on FTO substrate and their photovoltaic properties. Ceramics International, 2015, 41, 4118-4122.	2.3	16
41	Novel Rice Starch based aqueous gel electrolyte for Dye Sensitized Solar Cell Application. Materials Today: Proceedings, 2017, 4, 12238-12244.	0.9	16
42	Synthesis, characterization, and dye-sensitized solar cell fabrication using potato starch– and potato starch starch– and potato starch nanocrystal–based gel electrolytes. Ionics, 2019, 25, 6035-6042.	1.2	15
43	Large area bar coated TiO2 electron transport layers for perovskite solar cells with excellent performance homogeneity. Solar Energy, 2022, 240, 258-268.	2.9	13
44	Stability of MAPbI ₃ perovskite grown on planar and mesoporous electron-selective contact by inverse temperature crystallization. RSC Advances, 2020, 10, 30767-30775.	1.7	12
45	Single layer hollow MgF2 nanoparticles as high-performance omnidirectional broadband antireflective coating for solar application. Solar Energy Materials and Solar Cells, 2020, 215, 110680.	3.0	11
46	Design, synthesis of organic sensitizers containing carbazole and triphenylamine ï€-bridged moiety for dye-sensitized solar cells. Journal of the Iranian Chemical Society, 2019, 16, 1923-1937.	1.2	10
47	Dual-functional inorganic CuSCN for efficient hole extraction and moisture sealing of MAPbI ₃ perovskite solar cells. Materials Advances, 2022, 3, 2000-2010.	2.6	10
48	Ambient condition curable, highly weather stable anti-soiling coating for photovoltaic application. Solar Energy Materials and Solar Cells, 2021, 230, 111203.	3.0	8
49	Rapid assessment of photovoltaic activity of perovskite solar cells by photoluminescence spectroscopy. Materials Letters, 2021, 299, 130056.	1.3	8
50	Ambient processed perovskite sensitized porous TiO2 nanorods for highly efficient and stable perovskite solar cells. Journal of Alloys and Compounds, 2021, 884, 161061.	2.8	7
51	Facile control of intra- and inter-particle porosity in template-free synthesis of size-controlled nanoporous titanium dioxides beads for efficient organic–inorganic heterojunction solar cells. Journal of Power Sources, 2015, 279, 72-79.	4.0	6
52	Rapid and scalable synthesis of crystalline tin oxide nanoparticles with superior photovoltaic properties by flame oxidation. MRS Communications, 2017, 7, 862-866.	0.8	6
53	Hierarchical Sn and AgCl co-doped TiO2 microspheres as electron transport layer for enhanced perovskite solar cell performance. Catalysis Today, 2020, 355, 333-339.	2.2	6
54	Stibnite sensitized hollow cubic TiO2 photoelectrodes for organic-inorganic heterojunction solar cells. Solar Energy, 2017, 157, 434-440.	2.9	6

#	Article	IF	CITATIONS
55	Output current enhancement of hexylthiophene functionalized D–π-extended–A triphenylamine in dye sensitized solar cells. New Journal of Chemistry, 2019, 43, 10834-10840.	1.4	5
56	Economical and Highly Efficient Non-Metal Counter Electrode Materials for Stable Dye-Sensitized Solar Cells. , 2019, , 397-435.		5
57	Temperature dependence of MAPbI3 films by quasi-vapor deposition technique and impact on photovoltaic performance and stability of perovskite solar cells. Journal of Alloys and Compounds, 2021, 888, 161448.	2.8	5
58	Flexible Perovskite Solar Cells. , 2018, , 341-371.		4
59	Perovskite Solar Cell Architectures. , 2018, , 89-121.		3
60	Oxide free materials for perovskite solar cells. , 2022, , 287-306.		2
61	Hole Conductor–Free Perovskite Solar Cells. , 2018, , 289-321.		1
62	Five Strip-Type Dye Sensitized Solar Cells with Metal Grid Lines. Solid State Phenomena, 2007, 119, 315-318.	0.3	0