Leonardo Soriano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/342349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrothermal control of the lithium-rich Li ₂ MnO ₃ phase in lithium manganese oxide nanocomposites and their application as precursors for lithium adsorbents. Dalton Transactions, 2021, 50, 10765-10778.	3.3	8
2	Imaging the Kirkendall effect in pyrite (FeS2) thin films: Cross-sectional microstructure and chemical features. Acta Materialia, 2021, 205, 116582.	7.9	4
3	Influence of chemical and electronic inhomogeneities of graphene/copper on the growth of oxide thin films: the ZnO/graphene/copper case. Nanotechnology, 2021, 32, 245301.	2.6	1
4	Growth and characterization of ZnO thin films at low temperatures: from room temperature to â^'Â120°C. Journal of Alloys and Compounds, 2021, 884, 161056.	5.5	9
5	In-situ study of the carbon gasification reaction of highly oriented pyrolytic graphite promoted by cobalt oxides and the novel nanostructures appeared after reaction. Carbon, 2020, 158, 588-597.	10.3	3
6	Magnetization reversal mechanisms in Fe/NiO bilayers grown onto nanoporous alumina membranes and Si wafers. AIP Advances, 2020, 10, 015113.	1.3	0
7	Pursuit of optimal synthetic conditions for obtaining colloidal zero-valent iron nanoparticles by scanning pulsed laser ablation in liquids. Journal of Industrial and Engineering Chemistry, 2020, 81, 340-351.	5.8	15
8	Controlled ultra-thin oxidation of graphite promoted by cobalt oxides: Influence of the initial 2D CoO wetting layer. Applied Surface Science, 2020, 509, 145118.	6.1	8
9	Ultrathin Free-Standing Oxide Membranes for Electron and Photon Spectroscopy Studies of Solid–Gas and Solid–Liquid Interfaces. Nano Letters, 2020, 20, 6364-6371.	9.1	24
10	Re-Oxidation of ZnO Clusters Grown on HOPG. Coatings, 2020, 10, 401.	2.6	4
11	Silver nanopillar coatings grown by glancing angle magnetron sputtering for reducing multipactor effect in spacecrafts. Applied Surface Science, 2020, 526, 146699.	6.1	5
12	A Comparative Study of the ZnO Growth on Graphene and Graphene Oxide: The Role of the Initial Oxidation State of Carbon. Journal of Carbon Research, 2020, 6, 41.	2.7	12
13	Electronic Decoupling of Graphene from Copper Induced by Deposition of ZnO: A Complex Substrate/Graphene/Deposit/Environment Interaction. Advanced Materials Interfaces, 2020, 7, 1902062.	3.7	7
14	Thermal induced depletion of cationic vacancies in NiO thin films evidenced by x-ray absorption spectroscopy at the O 1s threshold. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	6
15	An XPS investigation on the influence of the substrate and growth conditions on pyrite thin films surface composition. Applied Surface Science, 2019, 492, 651-660.	6.1	8
16	Study of the Interface of the Early Stages of Growth under Quasiâ€Equilibrium Conditions of ZnO on Graphene/Cu and Graphite. Advanced Materials Interfaces, 2019, 6, 1801689.	3.7	6
17	Ultra-thin CoO films grown on different oxide substrates: Size and support effects and chemical stability. Journal of Alloys and Compounds, 2018, 758, 5-13.	5.5	3
18	Coercivity and morphology in Fe/NiO films deposited on nanoporous Al2O3 membranes. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2015, 54, 241-246.	1.9	0

#	Article	IF	CITATIONS
19	Nanopatterning on highly oriented pyrolytic graphite surfaces promoted by cobalt oxides. Carbon, 2015, 85, 89-98.	10.3	8
20	Study of the early stages of growth of Co oxides on oxide substrates. Surface and Interface Analysis, 2014, 46, 975-979.	1.8	9
21	Effects of grain refinement and disorder on the electronic properties of nanocrystalline NiO. Journal of Materials Science, 2014, 49, 2773-2780.	3.7	3
22	The growth of cobalt oxides on HOPG and SiO2 surfaces: A comparative study. Surface Science, 2014, 624, 145-153.	1.9	22
23	Effects of Ni vacancies and crystallite size on the O 1s and Ni 2p x-ray absorption spectra of nanocrystalline NiO. Journal of Physics Condensed Matter, 2013, 25, 495506.	1.8	27
24	Hexagonally-arranged-nanoporous and continuous NiO films with varying electrical conductivity. Applied Surface Science, 2013, 276, 832-837.	6.1	12
25	X-ray absorption study of the local structure atÂtheÂNiO/oxide interfaces. Journal of Synchrotron Radiation, 2013, 20, 635-640.	2.4	13
26	Surface contributions to the XPS spectra of nanostructured NiO deposited on HOPG. Surface Science, 2012, 606, 1426-1430.	1.9	76
27	Surface Functionalization of Nanostructured Porous Silicon by APTS: Toward the Fabrication of Electrical Biosensors of Bacterium Escherichia coli. Current Nanoscience, 2011, 7, 178-182.	1.2	20
28	Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing. Acta Materialia, 2011, 59, 6287-6296.	7.9	35
29	Study of ammonium fluoride passivation time on CdZnTe bulk crystal wafers. Crystal Research and Technology, 2011, 46, 659-663.	1.3	3
30	Investigation of surface and non-local screening effects in the Ni 2p core level photoemission spectra of NiO. Chemical Physics Letters, 2011, 501, 437-441.	2.6	74
31	Interface effects in the electronic structure of TiO2 deposited on MgO, Al2O3 and SiO2 substrates. Surface Science, 2011, 605, 539-544.	1.9	10
32	Study of the morphology of NiO nanostructures grown on highly ordered pyrolytic graphite, by the Tougaard method and atomic force microscopy: a comparative study. Surface and Interface Analysis, 2010, 42, 869-873.	1.8	6
33	Growth and Structure of Self-assembled Monolayers of a TTF Derivative on Au(111). Journal of Physical Chemistry C, 2010, 114, 6503-6510.	3.1	16
34	Oxidation post-treatment of hard AlTiN coating for machining of hardened steels. Surface and Coatings Technology, 2009, 204, 256-262.	4.8	24
35	Changes in the passive layer of corrugated austenitic stainless steel of low nickel content due to exposure to simulated pore solutions. Corrosion Science, 2009, 51, 785-792.	6.6	79
36	Interface effects in the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi mathvariant="normal">Ni</mml:mi><mml:mspace <br="" width="0.2em">/><mml:mn>2</mml:mn><mml:mi>p</mml:mi></mml:mspace></mml:mrow></mml:math> x-ray photoelectron spectra of NiO thin films grown on oxide substrates. Physical Review B, 2008, 77, .	3.2	66

#	Article	IF	CITATIONS
37	Optical characterization procedure for large thin films. , 2007, 6617, 312.		о
38	Thin films of oxygen-deficient perovskite phases by pulsed-laser ablation of strontium titanate. Physical Review B, 2007, 75, .	3.2	93
39	Surface effects in the Ni2px-ray photoemission spectra of NiO. Physical Review B, 2007, 75, .	3.2	134
40	Study of the growth of NiO on highly oriented pyrolytic graphite by X-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 111-114.	1.7	25
41	Multiple-length-scale small-angle X-ray scattering analysis on maghemite nanocomposites. Journal of Applied Crystallography, 2007, 40, s696-s700.	4.5	7
42	X-ray absorption spectroscopy study at the SiK-edge of tungsten carbide–silicon carbide thin films. Scripta Materialia, 2007, 56, 1011-1014.	5.2	5
43	Core-level electronic properties of nanostructured NiO coatings. Applied Surface Science, 2007, 254, 278-280.	6.1	10
44	Pasivación de aceros inoxidables dúplex en disoluciones que simulan el hormigón contaminado con cloruros. Materiales De Construccion, 2007, 57, .	0.7	6
45	Splitting ofNi3dstates at the surface ofNiOnanostructures. Physical Review B, 2006, 74, .	3.2	38
46	3p→3d resonant photoemission spectroscopy of a TiO2 sub-monolayer grown on Al2O3. Surface Science, 2004, 566-568, 515-519.	1.9	2
47	Electronic structure of TiO2 monolayers grown on Al2O3 and MgO studied by resonant photoemission spectroscopy. Surface Science, 2002, 507-510, 672-677.	1.9	10
48	Electronic Structure and Size of TiO 2 Nanoparticles of Controlled Size Prepared by Aerosol Methods. Monatshefte Für Chemie, 2002, 133, 849-857.	1.8	6
49	Factor analysis applied to the study of valence band resonant photoemission spectra in transition-metal compounds. Surface and Interface Analysis, 2002, 34, 244-247.	1.8	6
50	Soft x-ray absorption spectroscopy study of oxide layers on titanium alloys. Surface and Interface Analysis, 2002, 33, 570-576.	1.8	34
51	Electronic Structure and Size of TiO2 Nanoparticles of Controlled Size Prepared by Aerosol Methods. , 2002, , 113-121.		Ο
52	Electronic interaction at the TiO2–Al2O3 interface as observed by X-ray absorption spectroscopy. Surface Science, 2001, 482-485, 470-475.	1.9	25
53	Resonant Photoemission and X-ray Absorption Study of the Electronic Structure of the TiO2â^Al2O3 Interface. Langmuir, 2001, 17, 7339-7343.	3.5	12
54	Resonant photoemission of TiN films. Physical Review B, 2001, 63, .	3.2	14

#	Article	IF	CITATIONS
55	Study of the growth of ultrathin films of NiO on Cu(111). Surface and Interface Analysis, 2000, 30, 396-400.	1.8	14
56	Correlation between bonding structure and mechanical properties of amorphous carbon nitride thin films. Surface and Coatings Technology, 2000, 125, 284-288.	4.8	13
57	Correlation between N 1s core level x-ray photoelectron and x-ray absorption spectra of amorphous carbon nitride films. Applied Physics Letters, 2000, 77, 803-805.	3.3	28
58	Crystal-Field Effects at the TiO2â´'SiO2Interface As Observed by X-ray Absorption Spectroscopy. Langmuir, 2000, 16, 7066-7069.	3.5	32
59	Resonant photoemission characterization of SnO. Physical Review B, 1999, 60, 11171-11179.	3.2	23
60	Oxidation State and Size Effects in CoO Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 6676-6679.	2.6	46
61	Atomic force microscope study of the early stages of NiO deposition on graphite and mica. Thin Solid Films, 1998, 317, 59-63.	1.8	13
62	Electronic structure and chemical characterization of ultrathin insulating films. Thin Solid Films, 1998, 332, 209-214.	1.8	16
63	The electronic structure of TiN and VN: X-ray and electron spectra compared to band structure calculations. Solid State Communications, 1997, 102, 291-296.	1.9	38
64	Chemical Analysis of Ternary Ti Oxides using Soft X-ray Absorption Spectroscopy. Surface and Interface Analysis, 1997, 25, 804-808.	1.8	28
65	Thermal annealing of defects in highly defective NiO nanoparticles studied by X-ray and electron spectroscopies. Chemical Physics Letters, 1997, 266, 184-188.	2.6	14
66	Adsorption and oxidation of K deposited on graphite. Surface Science, 1996, 364, 253-265.	1.9	33
67	The electronic structure of ZrO2: Band structure calculations compared to electron and x-ray spectra. Solid State Communications, 1995, 93, 659-665.	1.9	37
68	Electronic structure of stoichiometric andAr+-bombardedZrO2determined by resonant photoemission. Physical Review B, 1995, 52, 11711-11720.	3.2	60
69	Electronic structure of insulatingZr3N4studied by resonant photoemission. Physical Review B, 1995, 51, 17984-17987.	3.2	21
70	The bremsstrahlung isochromat spectra of d0 transition-metal oxides. Solid State Communications, 1994, 91, 551-554.	1.9	9
71	The electronic structure of mesoscopic NiO particles. Chemical Physics Letters, 1993, 208, 460-464.	2.6	60
72	The interaction of N with Ti and the oxidation of TiN studied by soft X-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1993, 62, 197-206.	1.7	32

#	Article	IF	CITATIONS
73	The O 1s x-ray absorption spectra of transition-metal oxides: The TiO2â^'ZrO2â^'HfO2 and V2O5â^'Nb2O5â^'Ta2O5 series. Solid State Communications, 1993, 87, 699-703.	1.9	70
74	Chemical analysis of passivated and oxidized layers on FeCr and FeTi alloys by soft x-ray absorption spectroscopy. Surface and Interface Analysis, 1993, 20, 21-26.	1.8	34
75	Chemical changes induced by sputtering in TiO2 and some selected titanates as observed by X-ray absorption spectroscopy. Surface Science, 1993, 290, 427-435.	1.9	68
76	The interaction of nitrogen with titanium studied by soft X-ray absorption spectroscopy: adsorption versus implantation. Surface Science, 1993, 281, 120-126.	1.9	19
77	Interaction of Cesium-Potassium Antimonide Photocathode Materials with Oxygen: an X-Ray Photoelectron Spectroscopy Study. Japanese Journal of Applied Physics, 1993, 32, 4737-4744.	1.5	10
78	Thermal oxidation of TiN studied by means of soft xâ€ray absorption spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 47-51.	2.1	55
79	Catalytic oxidation of Mo by caesium oxides. Surface and Interface Analysis, 1992, 19, 553-558.	1.8	3
80	Composition of oxides and nitrides from line shapes of metal core level x-ray photoelectron spectra. Surface and Interface Analysis, 1992, 19, 205-210.	1.8	9
81	Oxidation of Cs2Te with superficial Te clusters studied by XPS. Surface Science, 1991, 251-252, 1075-1080.	1.9	5
82	An XPS study of Cs2Te photocathode materials. Surface and Interface Analysis, 1990, 16, 193-198.	1.8	21
83	An XPS study of the interaction of oxygen with zirconium. Surface Science, 1989, 218, 331-345.	1.9	296
84	Dielectric and structural characteristics of Ta2O5 anodic films formed in phosphoric acid electrolytes. Journal of Materials Science, 1987, 22, 1785-1789.	3.7	6
85	On the photoconductivity of copper sulphide polycrystalline thin films. Solar Energy Materials and Solar Cells, 1985, 12, 149-155.	0.4	10