
Yun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3423320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategies to increase tolerance and robustness of industrial microorganisms. Synthetic and Systems Biotechnology, 2022, 7, 533-540.	3.7	22
2	Yeast optimizes metal utilization based on metabolic network and enzyme kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
3	Strategies and challenges with the microbial conversion of methanol to highâ€value chemicals. Biotechnology and Bioengineering, 2021, 118, 3655-3668.	3.3	12
4	Metabolic network remodelling enhances yeast's fitness on xylose using aerobic glycolysis. Nature Catalysis, 2021, 4, 783-796.	34.4	23
5	De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories. Nature Communications, 2021, 12, 6085.	12.8	62
6	Functional characterization of (S)–N-methylcoclaurine 3′-hydroxylase (NMCH) involved in the biosynthesis of benzylisoquinoline alkaloids in Corydalis yanhusuo. Plant Physiology and Biochemistry, 2021, 168, 507-515.	5.8	6
7	Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production. ACS Synthetic Biology, 2020, 9, 3236-3244.	3.8	36
8	Elucidating aromatic acid tolerance at low pH in <i>Saccharomyces cerevisiae</i> using adaptive laboratory evolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27954-27961.	7.1	40
9	Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nature Catalysis, 2020, 3, 274-288.	34.4	245
10	Current state of aromatics production using yeast: achievements and challenges. Current Opinion in Biotechnology, 2020, 65, 65-74.	6.6	35
11	Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nature Catalysis, 2020, 3, 64-74.	34.4	80
12	Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2019, 8, 1968-1975.	3.8	44
13	Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nature Communications, 2019, 10, 4976.	12.8	177
14	Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose. Microbial Cell Factories, 2019, 18, 191.	4.0	26
15	Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metabolic Engineering, 2019, 56, 130-141.	7.0	63
16	Preparation of carbon nanotube/epoxy composite films with high tensile strength and electrical conductivity by impregnation under pressure. Frontiers of Materials Science, 2019, 13, 165-173.	2.2	7
17	Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae. Microbial Cell Factories, 2019, 18, 25.	4.0	27
18	Effects of overexpression of <i>STB5</i> in <i>Saccharomyces cerevisiae</i> on fatty acid biosynthesis, physiology and transcriptome. FEMS Yeast Research, 2019, 19, .	2.3	8

YUN CHEN

#	Article	IF	CITATIONS
19	Harnessing xylose pathways for biofuels production. Current Opinion in Biotechnology, 2019, 57, 56-65.	6.6	71
20	Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering, 2019, 52, 134-142.	7.0	251
21	Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative. Nature Communications, 2018, 9, 3059.	12.8	79
22	Modular Pathway Rewiring of Yeast for Amino Acid Production. Methods in Enzymology, 2018, 608, 417-439.	1.0	12
23	Effects of acetoacetyl-CoA synthase expression on production of farnesene in <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2017, 44, 911-922.	3.0	30
24	Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains. Metabolic Engineering, 2017, 44, 265-272.	7.0	51
25	Elimination of the last reactions in ergosterol biosynthesis alters the resistance of Saccharomyces cerevisiae to multiple stresses. FEMS Yeast Research, 2017, 17, .	2.3	34
26	Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microbial Cell Factories, 2016, 15, 53.	4.0	98
27	Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae. AMB Express, 2016, 6, 115.	3.0	39
28	Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30 °C. Scientific Reports, 2016, 6, 27003.	3.3	62
29	Biobased organic acids production by metabolically engineered microorganisms. Current Opinion in Biotechnology, 2016, 37, 165-172.	6.6	130
30	Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain. Microbial Cell Factories, 2015, 14, 116.	4.0	19
31	Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth. FEMS Yeast Research, 2015, 15, fov024.	2.3	17
32	Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase. FEMS Yeast Research, 2015, 15, .	2.3	28
33	Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae. Metabolic Engineering Communications, 2015, 2, 132-136.	3.6	59
34	De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metabolic Engineering, 2015, 32, 1-11.	7.0	242
35	Microbial acetyl-CoA metabolism and metabolic engineering. Metabolic Engineering, 2015, 28, 28-42.	7.0	237
36	Enabling Technologies to Advance Microbial Isoprenoid Production. Advances in Biochemical Engineering/Biotechnology, 2014, 148, 143-160.	1.1	10

Yun Chen

#	Article	IF	CITATIONS
37	Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metabolic Engineering, 2014, 22, 104-109.	7.0	123
38	Altered sterol composition renders yeast thermotolerant. Science, 2014, 346, 75-78.	12.6	368
39	Improving Production of Malonyl Coenzyme A-Derived Metabolites by Abolishing Snf1-Dependent Regulation of Acc1. MBio, 2014, 5, e01130-14.	4.1	194
40	Improving biobutanol production in engineered <i>Saccharomyces cerevisiae</i> by manipulation of acetyl-CoA metabolism. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1051-1056.	3.0	96
41	From flavors and pharmaceuticals to advanced biofuels: Production of isoprenoids in <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2013, 8, 1435-1444.	3.5	91
42	Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Current Opinion in Biotechnology, 2013, 24, 965-972.	6.6	111
43	Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 2013, 15, 48-54.	7.0	268
44	Profiling of Cytosolic and Peroxisomal Acetyl-CoA Metabolism in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e42475.	2.5	100
45	Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. AMB Express, 2012, 2, 52.	3.0	83
46	Enhancing the copy number of episomal plasmids in Saccharomyces cerevisiae for improved protein production. FEMS Yeast Research, 2012, 12, 598-607.	2.3	66
47	Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene l±-santalene in a fed-batch mode. Metabolic Engineering, 2012, 14, 91-103.	7.0	215
48	Diversion of Flux toward Sesquiterpene Production in <i>Saccharomyces cerevisiae</i> by Fusion of Host and Heterologous Enzymes. Applied and Environmental Microbiology, 2011, 77, 1033-1040.	3.1	194
49	Genetic Modulation of the Overexpression of Tailoring Genes <i>eryK</i> and <i>eryG</i> Leading to the Improvement of Erythromycin A Purity and Production in <i>Saccharopolyspora erythraea</i> Fermentation. Applied and Environmental Microbiology, 2008, 74, 1820-1828.	3.1	77