Eduardo Primo-Millo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3423039/publications.pdf

Version: 2024-02-01

80 papers 3,333 citations

126907 33 h-index 55 g-index

81 all docs 81 docs citations

81 times ranked 2804 citing authors

#	Article	IF	CITATIONS
1	Fruitâ€dependent epigenetic regulation of flowering in <i>Citrus</i> . New Phytologist, 2020, 225, 376-384.	7.3	37
2	Mechanical pruning attenuates alternate bearing in  Nadorcott' mandarin. Scientia Horticulturae, 2020, 261, 108993.	3.6	11
3	Vegetative growth. , 2020, , 193-217.		5
4	Flowering and fruit set., 2020,, 219-244.		8
5	Auxin and Gibberellin Interact in Citrus Fruit Set. Journal of Plant Growth Regulation, 2018, 37, 491-501.	5.1	21
6	Molecular Characterization and Stress Tolerance Evaluation of New Allotetraploid Somatic Hybrids Between Carrizo Citrange and Citrus macrophylla W. rootstocks. Frontiers in Plant Science, 2018, 9, 901.	3.6	30
7	Tetraploidy Enhances Boron-Excess Tolerance in Carrizo Citrange (Citrus sinensis L. Osb. × Poncirus) Tj ETQq1	1 0,78431 3.6	4 rgBT /Overl
8	Biosynthesis and Contents of Gibberellins in Seeded and Seedless Sweet Orange (Citrus sinensis L.) Tj ETQq0 0 0	rgBT /Ove	erlgck 10 Tf 5
9	Effects of salinity on diploid (2x) and doubled diploid (4x) Citrus macrophylla genotypes. Scientia Horticulturae, 2016, 207, 33-40.	3.6	48
10	Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species. Plant Science, 2016, 247, 13-24.	3.6	48
11	An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?. PLoS ONE, 2016, 11, e0155246.	2.5	19
12	BEHAVIOR OF DIPLOID AND TETRAPLOID GENOTYPES OF 'CARRIZO' CITRANGE UNDER ABIOTIC STRESS. Acta Horticulturae, 2015, , 1283-1292.	0.2	4
13	DIFFERENTIAL EXPRESSION OF PROTEINS RELATED TO PRIMARY METABOLISM IN 'MONCADA' MANDARIN LEAVES WITH CONTRASTING FRUIT LOAD. Acta Horticulturae, 2015, , 613-624.	0.2	0
14	PROTEINS RELATED TO STRESS AND REDOX STATE OF 'MONCADA' MANDARIN LEAVES WITH CONTRASTING FRUIT LOAD. Acta Horticulturae, 2015, , 625-634.	0.2	0
15	Physiological and Molecular Responses to Excess Boron in Citrus macrophylla W. PLoS ONE, 2015, 10, e0134372.	2.5	32
16	Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees. Journal of Plant Physiology, 2015, 176, 108-117.	3.5	28
17	Hormonal Profile in Ovaries of Mandarin Varieties with Differing Reproductive Behaviour. Journal of Plant Growth Regulation, 2015, 34, 584-594.	5.1	19
18	Flooding Impairs Fe Uptake and Distribution in Citrus Due to the Strong Down-Regulation of Genes Involved in Strategy I Responses to Fe Deficiency in Roots. PLoS ONE, 2015, 10, e0123644.	2.5	18

#	Article	IF	CITATIONS
19	Effects of high levels of zinc and manganese ions on Strategy I responses to iron deficiency in citrus. Plant and Soil, 2013, 373, 943-953.	3.7	14
20	The effect of sodium bicarbonate on plant performance and iron acquisition system of FA-5 (Forner-Alcaide 5) citrus seedlings. Acta Physiologiae Plantarum, 2013, 35, 2833-2845.	2.1	30
21	Bicarbonate blocks iron translocation from cotyledons inducing iron stress responses in Citrus roots. Journal of Plant Physiology, 2013, 170, 899-905.	3.5	18
22	Strategy I responses to Fe-deficiency of two Citrus rootstocks differing in their tolerance to iron chlorosis. Scientia Horticulturae, 2013, 153, 56-63.	3.6	28
23	Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. x Poncirus trifoliata (L.) Raf.]. Tree Physiology, 2013, 33, 320-329.	3.1	34
24	Carbon balance of citrus plantations in Eastern Spain. Agriculture, Ecosystems and Environment, 2013, 171, 103-111.	5.3	21
25	Selfâ€pollination and parthenocarpic ability in developing ovaries of selfâ€ncompatible Clementine mandarins (<i>Citrus clementina</i>). Physiologia Plantarum, 2013, 148, 87-96.	5.2	38
26	Proteomic analysis of "Moncada―mandarin leaves with contrasting fruit load. Plant Physiology and Biochemistry, 2013, 62, 95-106.	5.8	18
27	Proteomic study of â€~Moncada' mandarin buds from on- versus off-crop trees. Plant Physiology and Biochemistry, 2013, 73, 41-55.	5.8	14
28	Use or abuse of bioinformatic tools: a response to Samach. Annals of Botany, 2013, 111, 335-336.	2.9	0
29	Allometric Models for Estimating Carbon Fixation in Citrus Trees. Agronomy Journal, 2013, 105, 1355-1366.	1.8	4
30	Use of Nitrification Inhibitor DMPP to Improve Nitrogen Uptake Efficiency in Citrus Trees. Journal of Agricultural Science, 2013, 5, .	0.2	6
31	Influence of Rootstocks on Photosynthesis in Navel Orange Leaves: Effects on Growth, Yield, and Carbohydrate Distribution. Crop Science, 2012, 52, 836-848.	1.8	14
32	Impact of fertilizer-water management on nitrogen use efficiency and potential nitrate leaching in citrus trees. Soil Science and Plant Nutrition, 2012, 58, 659-669.	1.9	22
33	Fruit load modulates flowering-related gene expression in buds of alternate-bearing â€~Moncada' mandarin. Annals of Botany, 2012, 110, 1109-1118.	2.9	37
34	Gibberellic Acid Reduces Flowering Intensity in Sweet Orange [Citrus sinensis (L.) Osbeck] by Repressing CiFT Gene Expression. Journal of Plant Growth Regulation, 2012, 31, 529-536.	5.1	75
35	Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings. Journal of Plant Physiology, 2012, 169, 1150-1157.	3.5	44
36	Nitrogenâ€use efficiency of young citrus trees as influenced by the timing of fertilizer application. Journal of Plant Nutrition and Soil Science, 2012, 175, 282-292.	1.9	29

#	Article	IF	Citations
37	Fertigation: Concept and Application in Citrus. , 2012, , 281-301.		5
38	Seasonal Changes in Nitrate Uptake Efficiency in Young Potted Citrus Trees. Journal of Agricultural Science, 2012, 4, .	0.2	6
39	Fate of 15N-Labeled Potassium Nitrate in Different Citrus-Cultivated Soils: Influence of Spring and Summer Application. Water, Air, and Soil Pollution, 2012, 223, 2209-2222.	2.4	9
40	Influence of salinity on pip gene expression in citrus roots and its relationship with root hydraulic conductance, transpiration and chloride exclusion from leaves. Environmental and Experimental Botany, 2012, 78, 163-166.	4.2	37
41	NUTRITIONAL RESPONSES OF CITRUS ROOTSTOCKS TO SALINITY: PERFORMANCE OF THE NEW HYBRIDS FORNER-ALCAIDE 5 AND FORNER-ALCAIDE 13. Journal of Plant Nutrition, 2011, 34, 1437-1452.	1.9	23
42	Fruit regulates seasonal expression of flowering genes in alternate-bearing â€~Moncada' mandarin. Annals of Botany, 2011, 108, 511-519.	2.9	92
43	Nitrogen remobilization response to current supply in young citrus trees. Plant and Soil, 2011, 342, 433-443.	3.7	24
44	Water-deficit tolerance in citrus is mediated by the down regulation of PIP gene expression in the roots. Plant and Soil, 2011, 347, 91-104.	3.7	31
45	Hydraulic and Chemical Responses of Citrus Seedlings to Drought and Osmotic Stress. Journal of Plant Growth Regulation, 2011, 30, 353-366.	5.1	13
46	Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiology and Biochemistry, 2011, 49, 636-645.	5.8	92
47	Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks. Physiologia Plantarum, 2010, 139, 159-169.	5.2	75
48	Citrus rootstock responses to water stress. Scientia Horticulturae, 2010, 126, 95-102.	3.6	66
49	Ammonium transport and CitAMT1 expression are regulated by N in Citrus plants. Planta, 2009, 229, 331-342.	3.2	29
50	Regulation of Nitrate Transport in Citrus Rootstocks Depending of Nitrogen Availability. Plant Signaling and Behavior, 2007, 2, 337-342.	2.4	17
51	Ammonium transport and CitAMT1 expression are regulated by light and sucrose in Citrus plants. Journal of Experimental Botany, 2007, 58, 2811-2825.	4.8	24
52	Carbohydrate and ethylene levels related to fruitlet drop through abscission zone A in citrus. Trees - Structure and Function, 2006, 20, 348-355.	1.9	68
53	Responses ofÂcitrus plants toÂozone: leaf biochemistry, antioxidant mechanisms andÂlipid peroxidation. Plant Physiology and Biochemistry, 2006, 44, 125-131.	5.8	63
54	Antagonistic Changes between Abscisic Acid and Gibberellins in Citrus Fruits Subjected to a Series of Different Water Conditions. Journal of Plant Growth Regulation, 2005, 24, 179-187.	5.1	35

#	Article	IF	Citations
55	Recovery of the 15N-labelled fertiliser in citrus trees in relation with timing of application and irrigation system. Plant and Soil, 2005, 268, 367-376.	3.7	40
56	Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant and Soil, 2005, 270, 73-82.	3.7	134
57	Nitrate improves growth in salt-stressed citrus seedlings through effects on photosynthetic activity and chloride accumulation. Tree Physiology, 2004, 24, 1027-1034.	3.1	43
58	Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. Journal of Experimental Botany, 2003, 54, 825-833.	4.8	174
59	Fruit set dependence on carbohydrate availability in citrus trees. Tree Physiology, 2003, 23, 199-204.	3.1	104
60	Transmissible salt tolerance traits identified through reciprocal grafts between sensitive Carrizo and tolerant Cleopatra citrus genotypes. Journal of Plant Physiology, 2002, 159, 991-998.	3.5	40
61	Abscisic Acid Reduces Leaf Abscission and Increases Salt Tolerance in Citrus Plants. Journal of Plant Growth Regulation, 2002, 21, 234-240.	5.1	115
62	The synthetic auxin 3,5,6-TPA stimulates carbohydrate accumulation and growth in citrus fruit. Plant Growth Regulation, 2002, 36, 141-147.	3.4	45
63	In vivo sucrose stimulation of colour change in citrus fruit epicarps: Interactions between nutritional and hormonal signals. Physiologia Plantarum, 2001, 112, 244-250.	5.2	105
64	The ectopic overexpression of a citrus gibberellin 20-oxidase enhances the non-13-hydroxylation pathway of gibberellin biosynthesis and induces an extremely elongated phenotype in tobacco. Physiologia Plantarum, 2001, 112, 251-260.	5.2	72
65	Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta, 2000, 210, 636-643.	3.2	168
66	Cytokinins in peach: Endogenous levels during early fruit development. Plant Physiology and Biochemistry, 1999, 37, 741-750.	5.8	18
67	Influence of Chloride and Transpiration on Net15NO3â^'Uptake Rate byCitrus Roots. Annals of Botany, 1999, 84, 117-120.	2.9	21
68	Kinetics of nitrate uptake by Citrus seedlings and inhibitory effects of salinity. Plant Science, 1997, 126, 105-112.	3.6	77
69	Growth and gas exchange parameters of Citrus plants stressed with different salts. Journal of Plant Physiology, 1997, 150, 194-199.	3.5	111
70	Selection of a NaCl-tolerant Citrus plant. Plant Cell Reports, 1995, 14, 314-8.	5.6	25
71	1-Aminocyclopropane-1-carboxylic acid-induced ethylene stimulates callus formation by cell enlargement in the cambial region of internodal explants of Citrus. Plant Science, 1995, 110, 113-119.	3.6	16
72	1-Aminocyclopropane-1-Carboxylic Acid Transported from Roots to Shoots Promotes Leaf Abscission in Cleopatra Mandarin (<i>Citrus reshni</i> Hort. ex Tan.) Seedlings Rehydrated after Water Stress. Plant Physiology, 1992, 100, 131-137.	4.8	133

#	Article	IF	Citations
73	Gibberellins and Parthenocarpic Ability in Developing Ovaries of Seedless Mandarins. Plant Physiology, 1992, 99, 1575-1581.	4.8	129
74	Control by the embryo axis of the breakdown of storage proteins in cotyledons of germinating seeds of citrus limon. Journal of the Science of Food and Agriculture, 1991, 56, 435-443.	3.5	8
7 5	Hormonal changes associated with fruit set and development in mandarins differing in their parthenocarpic ability. Physiologia Plantarum, 1990, 79, 400-406.	5.2	70
76	Gibberellins inCitrus sinensis: A comparison between seeded and seedless varieties. Journal of Plant Growth Regulation, 1990, 9, 201-206.	5.1	51
77	Hormonal changes associated with fruit set and development in mandarins differing in their parthenocarpic ability. Physiologia Plantarum, 1990, 79, 400-406.	5.2	51
78	Influence of p-dimethylaminoazobenzene and doxorubicin on tobacco cell growth (Nicotiana tabacum) Tj ETQq0	0 <u>9 r</u> gBT	/Overlock 10
79	Selection of Nicotiana tabacum Haploids of High Photosynthetic Efficiency. Plant Physiology, 1985, 79, 505-508.	4.8	23
80	Chromatin changes related to dedifferentiation and differentiation in tobacco tissue culture (Nicotiana tabacum L.). Planta, 1982, 155, 273-280.	3.2	9