
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3422804/publications.pdf Version: 2024-02-01



Сомсти

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nanostructured transition metal dichalcogenide electrocatalysts for CO <sub>2</sub> reduction in ionic liquid. Science, 2016, 353, 467-470.                                                 | 12.6 | 778       |
| 2  | A lithium–oxygen battery with a long cycle life in an air-like atmosphere. Nature, 2018, 555, 502-506.                                                                                      | 27.8 | 433       |
| 3  | Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nature Energy, 2020, 5, 623-632.                       | 39.5 | 393       |
| 4  | Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–SÂbatteries.<br>Nature Energy, 2017, 2, .                                                              | 39.5 | 349       |
| 5  | Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol.<br>Nature Energy, 2019, 4, 957-968.                                                     | 39.5 | 349       |
| 6  | Carbon Dioxide Conversion to Methanol over Size-Selected Cu <sub>4</sub> Clusters at Low<br>Pressures. Journal of the American Chemical Society, 2015, 137, 8676-8679.                      | 13.7 | 299       |
| 7  | Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction. Journal of the American Chemical Society, 2017, 139, 4762-4768. | 13.7 | 265       |
| 8  | CO <sub>2</sub> Reduction on Transition Metal (Fe, Co, Ni, and Cu) Surfaces: In Comparison with<br>Homogeneous Catalysis. Journal of Physical Chemistry C, 2012, 116, 5681-5688.            | 3.1  | 247       |
| 9  | Tailoring the Edge Structure of Molybdenum Disulfide toward Electrocatalytic Reduction of Carbon<br>Dioxide. ACS Nano, 2017, 11, 453-460.                                                   | 14.6 | 208       |
| 10 | Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium–Oxygen Batteries. ACS Nano, 2016, 10,<br>2167-2175.                                                                            | 14.6 | 184       |
| 11 | Copper Cluster Size Effect in Methanol Synthesis from CO <sub>2</sub> . Journal of Physical Chemistry C, 2017, 121, 10406-10412.                                                            | 3.1  | 144       |
| 12 | Current Development of Pd(II) Complexes as Potential Antitumor Agents. Anti-Cancer Agents in<br>Medicinal Chemistry, 2009, 9, 356-368.                                                      | 1.7  | 141       |
| 13 | Ordering Heterogeneity of [MnO6] Octahedra in Tunnel-Structured MnO2 and Its Influence on Ion<br>Storage. Joule, 2019, 3, 471-484.                                                          | 24.0 | 123       |
| 14 | Tuning Li <sub>2</sub> O <sub>2</sub> Formation Routes by Facet Engineering of MnO <sub>2</sub><br>Cathode Catalysts. Journal of the American Chemical Society, 2019, 141, 12832-12838.     | 13.7 | 107       |
| 15 | The electrolyte comprising more robust water and superhalides transforms Znâ€metal anode<br>reversiblyÂand dendriteâ€free. , 2021, 3, 339-348.                                              |      | 100       |
| 16 | Highly Efficient Hydrogen Evolution Reaction Using Crystalline Layered Three-Dimensional<br>Molybdenum Disulfides Grown on Graphene Film. Chemistry of Materials, 2016, 28, 549-555.        | 6.7  | 98        |
| 17 | Toward Highly Efficient Electrocatalyst for Li–O <sub>2</sub> Batteries Using Biphasic N-Doping<br>Cobalt@Graphene Multiple-Capsule Heterostructures. Nano Letters, 2017, 17, 2959-2966.    | 9.1  | 91        |
| 18 | Atomically Precise Strategy to a PtZn Alloy Nanocluster Catalyst for the Deep Dehydrogenation of <i>n</i> -Butane to 1,3-Butadiene. ACS Catalysis, 2018, 8, 10058-10063.                    | 11.2 | 67        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Computational studies of electrochemical CO <sub>2</sub> reduction on subnanometer transition metal clusters. Physical Chemistry Chemical Physics, 2014, 16, 26584-26599.                                           | 2.8  | 62        |
| 20 | Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopy. Science Advances, 2020, 6, .                                                              | 10.3 | 61        |
| 21 | Encapsulating Various Sulfur Allotropes within Graphene Nanocages for Long‣asting Lithium<br>Storage. Advanced Functional Materials, 2018, 28, 1706443.                                                             | 14.9 | 60        |
| 22 | Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica.<br>Journal of the American Chemical Society, 2018, 140, 3940-3951.                                               | 13.7 | 56        |
| 23 | Deciphering the Atomic Patterns Leading to MnO2 Polymorphism. CheM, 2019, 5, 1793-1805.                                                                                                                             | 11.7 | 46        |
| 24 | Insights into Structural Evolution of Lithium Peroxides with Reduced Charge Overpotential in<br>Liâ^O <sub>2</sub> System. Advanced Energy Materials, 2019, 9, 1900662.                                             | 19.5 | 38        |
| 25 | Electrophilic Organoiridium(III) Pincer Complexes on Sulfated Zirconia for Hydrocarbon Activation and Functionalization. Journal of the American Chemical Society, 2019, 141, 6325-6337.                            | 13.7 | 38        |
| 26 | Evidence for Redox Mechanisms in Organometallic Chemisorption and Reactivity on Sulfated Metal<br>Oxides. Journal of the American Chemical Society, 2018, 140, 6308-6316.                                           | 13.7 | 34        |
| 27 | Highly Efficient Solarâ€Ðriven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using<br>Choline Chlorideâ€Based Electrolyte. Advanced Energy Materials, 2019, 9, 1803536.                                 | 19.5 | 34        |
| 28 | Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries. Angewandte Chemie -<br>International Edition, 2020, 59, 22978-22982.                                                                     | 13.8 | 29        |
| 29 | Reaction Mechanism of the Reverse Water–Gas Shift Reaction Using First-Row Middle Transition Metal<br>Catalysts L′M (M = Fe, Mn, Co): A Computational Study. Inorganic Chemistry, 2011, 50, 8782-8789.              | 4.0  | 27        |
| 30 | Operando HERFD-XANES and surface sensitive Δμ analyses identify the structural evolution of copper(II) phthalocyanine for electroreduction of CO2. Journal of Energy Chemistry, 2022, 64, 1-7.                      | 12.9 | 27        |
| 31 | C–O Bond Cleavage of Dimethyl Ether by Transition Metal Ions: A Systematic Study on Catalytic<br>Properties of Metals and Performance of DFT Functionals. Journal of Physical Chemistry A, 2013, 117,<br>5140-5148. | 2.5  | 26        |
| 32 | Isolated, well-defined organovanadium( <scp>iii</scp> ) on silica: single-site catalyst for hydrogenation of alkenes and alkynes. Chemical Communications, 2017, 53, 7325-7328.                                     | 4.1  | 26        |
| 33 | Supported Aluminum Catalysts for Olefin Hydrogenation. ACS Catalysis, 2017, 7, 689-694.                                                                                                                             | 11.2 | 25        |
| 34 | Theoretical Studies on the Catalysis of the Reverse Waterâ^'Gas Shift Reaction Using First-Row<br>Transition Metal β-Diketiminato Complexes. Journal of Physical Chemistry A, 2010, 114, 6207-6216.                 | 2.5  | 23        |
| 35 | Role of Boron in Enhancing the Catalytic Performance of Supported Platinum Catalysts for the Nonoxidative Dehydrogenation of <i>n </i> >Butane. ACS Catalysis, 2020, 10, 1500-1510.                                 | 11.2 | 21        |
| 36 | Water Oxidation Catalysis via Size-Selected Iridium Clusters. Journal of Physical Chemistry C, 2018, 122,<br>9965-9972.                                                                                             | 3.1  | 20        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Cleavage of the βO4 linkage of lignin using group 8 pincer complexes: A DFT study. Journal of<br>Molecular Catalysis A, 2015, 399, 33-41.                                                                                         | 4.8  | 19        |
| 38 | Catalytic Upgrading of Biomass-Derived Compounds via C–C Coupling Reactions: Computational and<br>Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5. Journal of Physical Chemistry C,<br>2015, 119, 24025-24035. | 3.1  | 19        |
| 39 | Mechanistic Aspects of a Surface Organovanadium(III) Catalyst for Hydrocarbon Hydrogenation and Dehydrogenation. ACS Catalysis, 2019, 9, 11055-11066.                                                                             | 11.2 | 17        |
| 40 | Computational Investigation of the Role of Active Site Heterogeneity for a Supported Organovanadium(III) Hydrogenation Catalyst. ACS Catalysis, 2021, 11, 7257-7269.                                                              | 11.2 | 16        |
| 41 | Enhancing electrocatalysis for hydrogen production over CoP catalyst by strain: a density functional theory study. Physical Chemistry Chemical Physics, 2019, 21, 9137-9140.                                                      | 2.8  | 15        |
| 42 | Molecular Dynamics Studies of the Protein–Protein Interactions in Inhibitor of κB Kinase-β. Journal of<br>Chemical Information and Modeling, 2014, 54, 562-572.                                                                   | 5.4  | 13        |
| 43 | Pairwise semi-hydrogenation of alkyne to <i>cis</i> -alkene on platinum-tin intermetallic compounds.<br>Nanoscale, 2020, 12, 8519-8524.                                                                                           | 5.6  | 12        |
| 44 | Development of activity–descriptor relationships for supported metal ion hydrogenation catalysts<br>on silica. Polyhedron, 2018, 152, 73-83.                                                                                      | 2.2  | 11        |
| 45 | Theoretical Determination of Size Effects in Zeolite-Catalyzed Alcohol Dehydration. Catalysts, 2019, 9, 700.                                                                                                                      | 3.5  | 11        |
| 46 | Single-Molecule Kinetics of Styrene Hydrogenation on Silica-Supported Vanadium: The Role of<br>Disorder for Single-Atom Catalysts. Journal of Physical Chemistry C, 2021, 125, 20286-20300.                                       | 3.1  | 10        |
| 47 | Approaching theoretical specific capacity of iron-rich lithium iron silicate using<br>graphene-incorporation and fluorine-doping. Journal of Materials Chemistry A, 2022, 10, 4006-4014.                                          | 10.3 | 10        |
| 48 | Nuclearity effects in supported, single-site Fe( <scp>ii</scp> ) hydrogenation pre-catalysts. Dalton<br>Transactions, 2018, 47, 10842-10846.                                                                                      | 3.3  | 9         |
| 49 | Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries. Angewandte Chemie, 2020,<br>132, 23178-23182.                                                                                                          | 2.0  | 8         |
| 50 | Integrated Experimental and Computational K-Edge X-ray Absorption Near-Edge Structure Analysis of<br>Vanadium Catalysts. Journal of Physical Chemistry C, 2022, 126, 11949-11962.                                                 | 3.1  | 7         |
| 51 | Investigation of Thermochemistry Associated with the Carbon–Carbon Coupling Reactions of Furan and Furfural Using ab Initio Methods. Journal of Physical Chemistry A, 2014, 118, 4392-4404.                                       | 2.5  | 6         |
| 52 | Electrochemical Investigation of Low-Valent Multiply M≡M Bonded Group VI Dimers: A Standard<br>Chemical Reduction Leads to an Unexpected Product. Organometallics, 2020, 39, 4430-4436.                                           | 2.3  | 6         |
| 53 | Lithium-Ion Battery Materials as Tunable, "Redox Non-Innocent―Catalyst Supports. ACS Catalysis, 0, ,<br>7233-7242.                                                                                                                | 11.2 | 6         |
| 54 | Periodic Trends in 3d Metal Mediated CO2 Activation. ACS Symposium Series, 2013, , 67-88.                                                                                                                                         | 0.5  | 3         |

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Hydrogen Activation by Silica-Supported Metal Ion Catalysts: Catalytic Properties of Metals and<br>Performance of DFT Functionals. Journal of Physical Chemistry A, 2019, 123, 171-186.                                                                         | 2.5  | 3         |
| 56 | Tale of Three Molecular Nitrides: Mononuclear Vanadium (V) and (IV) Nitrides As Well As a<br>Mixed-Valence Trivanadium Nitride Having a V <sub>3</sub> N <sub>4</sub> Double-Diamond Core.<br>Journal of the American Chemical Society, 2022, 144, 10201-10219. | 13.7 | 3         |
| 57 | Thermal Atomic Layer Deposition of Gold: Mechanistic Insights, Nucleation, and Epitaxy. ACS Applied<br>Materials & Interfaces, 2021, 13, 9091-9100.                                                                                                             | 8.0  | 2         |
| 58 | Computational Aspects of Single-Molecule Kinetics for Coupled Catalytic Cycles: A Spectral Analysis.<br>Journal of Physical Chemistry A, O, , .                                                                                                                 | 2.5  | 2         |
| 59 | In situ Liquid Cell Transmission Electron Microscopy Study of Hydroxyapatite Mineralization Process.<br>Microscopy and Microanalysis, 2019, 25, 1502-1502.                                                                                                      | 0.4  | 1         |

60 Titelbild: Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries (Angew. Chem.) Tj ETQq0.0 vgBT\_Overlock