
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3422320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochemical Pharmacology, 1995, 50, 83-90.	4.4	2,561
2	Cannabinoid Receptors CB1 and CB2: A Characterization of Expression and Adenylate Cyclase Modulation within the Immune System. Toxicology and Applied Pharmacology, 1997, 142, 278-287.	2.8	306
3	Interleukin-2 Suppression by 2-Arachidonyl Glycerol Is Mediated through Peroxisome Proliferator-Activated Receptor I³ Independently of Cannabinoid Receptors 1 and 2. Molecular Pharmacology, 2006, 70, 101-111.	2.3	153
4	Suppression of the humoral immune response by cannabinoids is partially mediated through inhibition of adenylate cyclase by a pertussis toxin-sensitive G-protein coupled mechanism. Biochemical Pharmacology, 1994, 48, 1899-1908.	4.4	120
5	Cannabinoid Inhibition of Adenylate Cyclase-mediated Signal Transduction and Interleukin 2 (IL-2) Expression in the Murine T-cell Line, EL4.IL-2. Journal of Biological Chemistry, 1996, 271, 13175-13183.	3.4	113
6	The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT). Biochemical Pharmacology, 2008, 76, 726-737.	4.4	104
7	Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Particle and Fibre Toxicology, 2013, 10, 26.	6.2	101
8	Suppression of Interleukin-2 by the Putative Endogenous Cannabinoid 2-Arachidonyl-Glycerol Is Mediated through Down-regulation of the Nuclear Factor of Activated T Cells. Molecular Pharmacology, 1998, 53, 676-683.	2.3	100
9	Aryl Hydrocarbon Receptor-Dependent Suppression by 2,3,7,8-Tetrachlorodibenzo- <i>p</i> -dioxin of IgM Secretion in Activated B Cells. Molecular Pharmacology, 1998, 53, 623-629.	2.3	88
10	A Cyclooxygenase Metabolite of Anandamide Causes Inhibition of Interleukin-2 Secretion in Murine Splenocytes. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 683-690.	2.5	80
11	HIV-infected cannabis users have lower circulating CD16+ monocytes and IFN-γ-inducible protein 10 levels compared with nonusing HIV patients. Aids, 2018, 32, 419-429.	2.2	78
12	Time-Dependent Airway Epithelial and Inflammatory Cell Responses Induced by Influenza Virus A/PR/8/34 in C57BL/6 Mice. Toxicologic Pathology, 2007, 35, 424-435.	1.8	74
13	Evidence for Cannabinoid Receptor-Dependent and -Independent Mechanisms of Action in Leukocytes. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 1077-1085.	2.5	73
14	Δ9-tetrahydrocannabinol selectivity inhibits T-cell dependent humoral immune responses through direct inhibition of accessory T-cell function. Immunopharmacology, 1993, 26, 129-137.	2.0	65
15	Leukocyte Activation Induces Aryl Hydrocarbon Receptor Up-Regulation, DNA Binding, and Increased <i>Cyp1a1</i> Expression in the Absence of Exogenous Ligand. Molecular Pharmacology, 1997, 52, 921-927.	2.3	63
16	Inhibition of the Cyclic AMP Signaling Cascade and Nuclear Factor Binding to CRE and κB Elements by Cannabinol, a Minimally CNS-Active Cannabinoid. Biochemical Pharmacology, 1998, 55, 1013-1023.	4.4	63
17	Examination of the immunosuppressive effect of Δ9-tetrahydrocannabinol in streptozotocin-induced autoimmune diabetes. International Immunopharmacology, 2001, 1, 699-712.	3.8	62
18	Modulation of Airway Responses to Influenza A/PR/8/34 by Δ ⁹ -Tetrahydrocannabinol in C57BL/6 Mice. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 675-683.	2.5	62

#	Article	IF	CITATIONS
19	Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses. Environmental Health Perspectives, 2014, 122, 1261-1270.	6.0	62
20	Attenuation of the ovalbumin-induced allergic airway response by cannabinoid treatment in A/J mice â~†. Toxicology and Applied Pharmacology, 2003, 188, 24-35.	2.8	61
21	The Long Winding Road toward Understanding the Molecular Mechanisms for B-Cell Suppression by 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 2011, 120, S171-S191.	3.1	59
22	Aryl Hydrocarbon Receptor-Dependent Inhibition of AP-1 Activity by 2,3,7,8-Tetrachlorodibenzo-p-dioxin in Activated B Cells. Toxicology and Applied Pharmacology, 2002, 181, 116-123.	2.8	55
23	2,3,7,8-Tetrachlorodibenzo- <i>p</i> -Dioxin Alters Lipid Metabolism and Depletes Immune Cell Populations in the Jejunum of C57BL/6 Mice. Toxicological Sciences, 2015, 148, 567-580.	3.1	52
24	Allergic Rhinitis Induced by Intranasal Sensitization and Challenge with Trimellitic Anhydride but Not with Dinitrochlorobenzene or Oxazolone in A/J Mice. Toxicological Sciences, 2004, 79, 315-325.	3.1	49
25	Targeted deletion of cannabinoid receptors CB1 and CB2 produced enhanced inflammatory responses to influenza A/PR/8/34 in the absence and presence of Δ9-tetrahydrocannabinol. Journal of Leukocyte Biology, 2008, 83, 785-796.	3.3	49
26	Immune regulation by cannabinoid compounds through the inhibition of the cyclic AMP signaling cascade and altered gene expression. Biochemical Pharmacology, 1996, 52, 1133-1140.	4.4	45
27	AP-1 activity is negatively regulated by cannabinol through inhibition of its protein components, c-fos and c-jun. Journal of Leukocyte Biology, 2000, 67, 259-266.	3.3	45
28	A Bistable Switch Underlying B-Cell Differentiation and Its Disruption by the Environmental Contaminant 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 2010, 115, 51-65.	3.1	45
29	Δ9-Tetrahydrocannabinol Impairs the Inflammatory Response to Influenza Infection: Role of Antigen-Presenting Cells and the Cannabinoid Receptors 1 and 2. Toxicological Sciences, 2013, 131, 419-433.	3.1	45
30	Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. Journal of Immunotoxicology, 2013, 10, 321-328.	1.7	44
31	Δ9-Tetrahydrocannabinol Suppresses Monocyte-Mediated Astrocyte Production of Monocyte Chemoattractant Protein 1 and Interleukin-6 in a Toll-Like Receptor 7–Stimulated Human Coculture. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 191-201.	2.5	43
32	An Integrated Genomic Analysis of Aryl Hydrocarbon Receptor-Mediated Inhibition of B-Cell Differentiation. Toxicological Sciences, 2010, 118, 454-469.	3.1	42
33	Induction of intracellular calcium elevation by Δ9-tetrahydrocannabinol in T cells involves TRPC1 channels. Journal of Leukocyte Biology, 2006, 79, 202-213.	3.3	39
34	2,3,7,8-Tetrachlorodibenzo- <i>p</i> -dioxin-Mediated Impairment of B Cell Differentiation Involves Dysregulation of Paired Box 5 (Pax5) Isoform, Pax5a. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 463-474.	2.5	38
35	15-Deoxy-Δ ^{12,14} -prostaglandin J ₂ -Glycerol Ester, a Putative Metabolite of 2-Arachidonyl Glycerol, Activates Peroxisome Proliferator Activated Receptor γ. Molecular Pharmacology, 2011, 80, 201-209.	2.3	38
36	Evaluation of immunologic and intestinal effects in rats administered an E 171-containing diet, a food grade titanium dioxide (TiO2). Food and Chemical Toxicology, 2019, 133, 110793.	3.6	38

#	Article	IF	CITATIONS
37	A COX-2 metabolite of the endogenous cannabinoid, 2-arachidonyl glycerol, mediates suppression of IL-2 secretion in activated Jurkat T cells. Biochemical Pharmacology, 2008, 76, 353-361.	4.4	37
38	Effects of targeted deletion of cannabinoid receptors CB1 and CB2 on immune competence and sensitivity to immune modulation by Δ9-tetrahydrocannabinol. Journal of Leukocyte Biology, 2008, 84, 1574-1584.	3.3	37
39	Cannabinoid-Mediated Elevation of Intracellular Calcium: A Structure-Activity Relationship. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 820-829.	2.5	34
40	Cannabinoid receptor-mediated regulation of intracellular calcium by Δ9-tetrahydrocannabinol in resting T cells. Journal of Leukocyte Biology, 2004, 75, 884-892.	3.3	32
41	Deletion of cannabinoid receptors 1 and 2 exacerbates APC function to increase inflammation and cellular immunity during influenza infection. Journal of Leukocyte Biology, 2011, 90, 983-995.	3.3	32
42	CLARITY-BPA: Effects of chronic bisphenol A exposure on the immune system: Part 2 – Characterization of lymphoproliferative and immune effector responses by splenic leukocytes. Toxicology, 2018, 396-397, 54-67.	4.2	32
43	The role of metabolism in carbon tetrachloride-mediated immunosuppression: In vivo studies. Toxicology and Applied Pharmacology, 1990, 102, 9-20.	2.8	31
44	Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells. Toxicology and Applied Pharmacology, 2017, 316, 95-106.	2.8	31
45	Aryl Hydrocarbon Receptor Activation Suppresses EBF1 and PAX5 and Impairs Human B Lymphopoiesis. Journal of Immunology, 2017, 199, 3504-3515.	0.8	31
46	CLARITY-BPA: Effects of chronic Bisphenol A exposure on the immune system: Part 1 – Quantification of the relative number and proportion of leukocyte populations in the spleen and thymus. Toxicology, 2018, 396-397, 46-53.	4.2	31
47	Macrophage depletion lowers blood pressure and restores sympathetic nerve α2-adrenergic receptor function in mesenteric arteries of DOCA-salt hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1186-H1197.	3.2	30
48	Cannabinol Enhancement of Interleukin-2 (IL-2) Expression by T Cells Is Associated with an Increase in IL-2 Distal Nuclear Factor of Activated T Cell Activity. Molecular Pharmacology, 2002, 61, 446-454.	2.3	29
49	SLAMF7 Is a Critical Negative Regulator of IFN-α–Mediated CXCL10 Production in Chronic HIV Infection. Journal of Immunology, 2019, 202, 228-238.	0.8	29
50	Cannabinoids inhibit the activation of ERK MAPK in PMA/Io-stimulated mouse splenocytes. International Immunopharmacology, 2003, 3, 1503-1510.	3.8	28
51	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Alters the Regulation of Pax5 in Lipopolysaccharide-Activated B Cells. Toxicological Sciences, 2004, 77, 272-279.	3.1	28
52	Induction of the Aryl Hydrocarbon Receptor–Responsive Genes and Modulation of the Immunoglobulin M Response by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Primary Human B Cells. Toxicological Sciences, 2010, 118, 86-97.	3.1	28
53	Involvement of Blimp-1 and AP-1 Dysregulation in the 2,3,7,8-Tetrachlorodibenzo-p-dioxin–mediated Suppression of the IgM Response by B Cells. Toxicological Sciences, 2009, 108, 377-388.	3.1	27
54	2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated disruption of the CD40 ligand-induced activation of primary human B cells. Toxicology and Applied Pharmacology, 2011, 255, 251-260.	2.8	27

#	Article	IF	CITATIONS
55	Magnitude of stimulation dictates the cannabinoid-mediated differential T cell response to HIVgp120. Journal of Leukocyte Biology, 2012, 92, 1093-1102.	3.3	27
56	2,3,7,8-Tetrachlorodibenzo-p-dioxin, an Exogenous Modulator of the 3′α Immunoglobulin Heavy Chain Enhancer in the CH12.LX Mouse Cell Line. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 71-78.	2.5	26
57	Targeting Cannabinoid Receptor 2 on Peripheral Leukocytes to Attenuate Inflammatory Mechanisms Implicated in HIV-Associated Neurocognitive Disorder. Journal of NeuroImmune Pharmacology, 2020, 15, 780-793.	4.1	26
58	Identification of functional aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator in murine splenocytes. Biochemical Pharmacology, 1996, 52, 771-780.	4.4	25
59	Interactions at a dioxin responsive element (DRE) and an overlapping κB site within the hs4 domain of the 3′α immunoglobulin heavy chain enhancer. Toxicology, 2004, 200, 235-246.	4.2	25
60	2-Arachidonoyl-glycerol suppresses interferon-Î ³ production in phorbol ester/ionomycin-activated mouse splenocytes independent of CB1 or CB2. Journal of Leukocyte Biology, 2005, 77, 966-974.	3.3	25
61	Δ9-Tetrahydrocannabinol Suppresses Cytotoxic T Lymphocyte Function Independent of CB1 and CB2, Disrupting Early Activation Events. Journal of NeuroImmune Pharmacology, 2012, 7, 843-855.	4.1	25
62	Embracing systems toxicology at single-cell resolution. Current Opinion in Toxicology, 2019, 16, 49-57.	5.0	24
63	Stochastic Modeling of B Lymphocyte Terminal Differentiation and Its Suppression by Dioxin. BMC Systems Biology, 2010, 4, 40.	3.0	23
64	Regulation of Bach2 by the aryl hydrocarbon receptor as a mechanism for suppression of B-cell differentiation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 2011, 252, 150-158.	2.8	23
65	Aryl hydrocarbon receptor activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs human B lymphopoiesis. Toxicology, 2017, 378, 17-24.	4.2	23
66	TGF-β1 differentially regulates IL-2 expression and [3H]-thymidine incorporation in CD3Îμ mAb- and CD28 mAb-activated splenocytes and thymocytes. Immunopharmacology, 2000, 48, 101-115.	2.0	22
67	2,3,7,8-Tetrachlorodibenzo-p-dioxin–Mediated Suppression of Toll-Like Receptor Stimulated B-Lymphocyte Activation and Initiation of Plasmacytic Differentiation. Toxicological Sciences, 2010, 116, 99-112.	3.1	21
68	Inhibition of the cAMP signaling cascade via cannabinoid receptors: a putative mechanism of immune modulation by cannabinoid compounds. Toxicology Letters, 1998, 102-103, 59-63.	0.8	20
69	Δ9-Tetrahydrocannabinol Suppresses Secretion of IFNα by Plasmacytoid Dendritic Cells From Healthy and HIV-Infected Individuals. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 75, 588-596.	2.1	20
70	Concentration-dependent bifunctional effect of TGF-β1 on immunoglobulin production: a role for Smad3 in IgA production in vitro. International Immunopharmacology, 2003, 3, 1761-1774.	3.8	19
71	Suppression of CpG-ODN-mediated IFNα and TNFα response in human plasmacytoid dendritic cells (pDC) by cannabinoid receptor 2 (CB2)-specific agonists. Toxicology and Applied Pharmacology, 2019, 369, 82-89.	2.8	19
72	Cannabidiol selectively modulates interleukin (IL)-1β and IL-6 production in toll-like receptor activated human peripheral blood monocytes. Toxicology, 2021, 464, 153016.	4.2	19

#	Article	IF	CITATIONS
73	Inhibition of protein kinase A and cyclic AMP response element (CRE)-specific transcription factor binding by Δ9-tetrahydrocannabinol (Δ9-THC). Biochemical Pharmacology, 1997, 53, 1477-1484.	4.4	18
74	Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ9-tetrahydrocannabinol in human CD4+ T cells. Toxicology and Applied Pharmacology, 2013, 273, 209-218.	2.8	18
75	Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2′-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide. Toxicology and Applied Pharmacology, 2005, 205, 107-115.	2.8	17
76	Establishment of an Immunoglobulin M Antibody-Forming Cell Response Model for Characterizing Immunotoxicity in Primary Human B Cells. Toxicological Sciences, 2009, 112, 363-373.	3.1	17
77	Suppression of T cell costimulator ICOS by Δ9-tetrahydrocannabinol. Journal of Leukocyte Biology, 2009, 85, 322-329.	3.3	17
78	Simultaneous In Vivo Time Course and Dose Response Evaluation for TCDD-Induced Impairment of the LPS-stimulated Primary IgM Response. Toxicological Sciences, 2009, 112, 123-132.	3.1	17
79	Role of aryl hydrocarbon receptor polymorphisms on TCDD-mediated CYP1B1 induction and IgM suppression by human B cells. Toxicology and Applied Pharmacology, 2016, 309, 15-23.	2.8	17
80	Immunological characterization of the aryl hydrocarbon receptor (AHR) knockout rat in the presence and absence of 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD). Toxicology, 2016, 368-369, 172-182.	4.2	17
81	All-or-none suppression of B cell terminal differentiation by environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 2013, 268, 17-26.	2.8	16
82	Suppression of Human B Cell Activation by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Involves Altered Regulation of B Cell Lymphoma-6. Toxicological Sciences, 2015, 144, 39-50.	3.1	16
83	Modulation of HIVGP120 Antigen-Specific Immune Responses In Vivo by Δ9-Tetrahydrocannabinol. Journal of NeuroImmune Pharmacology, 2015, 10, 344-355.	4.1	15
84	Pseuderanthemum palatiferum leaf extract inhibits the proinflammatory cytokines, TNF- $\hat{l}\pm$ and IL-6 expression in LPS-activated macrophages. Food and Chemical Toxicology, 2016, 97, 11-22.	3.6	14
85	The Influence of Human Interindividual Variability on the Low-Dose Region of Dose-Response Curve Induced by 2,3,7,8-Tetrachlorodibenzo- <i>p</i> -Dioxin in Primary B Cells. Toxicological Sciences, 2016, 153, 352-360.	3.1	14
86	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Alters the Regulation and Posttranslational Modification of p27kip1 in Lipopolysaccharide-Activated B Cells. Toxicological Sciences, 2003, 75, 333-342.	3.1	13
87	Induced T cell cytokine production is enhanced by engineered nanoparticles. Nanotoxicology, 2014, 8, 11-23.	3.0	13
88	lmiquimod and interferon-alpha augment monocyte-mediated astrocyte secretion of MCP-1, IL-6 and IP-10 in a human co-culture system. Journal of Neuroimmunology, 2019, 333, 576969.	2.3	13
89	The Effects of Targeted Deletion of Cannabinoid Receptors CB ₁ and CB ₂ on Intranasal Sensitization and Challenge with Adjuvant-free Ovalbumin. Toxicologic Pathology, 2010, 38, 382-392.	1.8	12
90	Modulatory Influence of Segmented Filamentous Bacteria on Transcriptomic Response of Gnotobiotic Mice Exposed to TCDD. Frontiers in Microbiology, 2017, 8, 1708.	3.5	12

#	Article	IF	CITATIONS
91	Suppression of the IgM Response by Aryl Hydrocarbon Receptor Activation in Human Primary B Cells Involves Impairment of Immunoglobulin Secretory Processes. Toxicological Sciences, 2018, 163, 319-329.	3.1	12
92	Interferon- <i>α</i> –Mediated Activation of T Cells from Healthy and HIV-Infected Individuals Is Suppressed by Δ ⁹ -Tetrahydrocannabinol. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 49-58.	2.5	12
93	Phospholipase A 2 inhibitors p -bromophenacyl bromide and arachidonyl trifluoromethyl ketone suppressed interleukin-2 (IL-2) expression in murine primary splenocytes. Archives of Toxicology, 1999, 73, 1-6.	4.2	11
94	Immunotoxicity testing using human primary leukocytes: An adjunct approach for the evaluation of human risk. Current Opinion in Toxicology, 2017, 3, 25-29.	5.0	11
95	Lymphocyte-Specific Protein Tyrosine Kinase (LCK) is Involved in the Aryl Hydrocarbon Receptor-Mediated Impairment of Immunoglobulin Secretion in Human Primary B Cells. Toxicological Sciences, 2018, 165, 322-334.	3.1	11
96	Gene co-regulation and co-expression in the aryl hydrocarbon receptor-mediated transcriptional regulatory network in the mouse liver. Archives of Toxicology, 2020, 94, 113-126.	4.2	11
97	The current understanding of the benefits, safety, and regulation of cannabidiol in consumer products. Food and Chemical Toxicology, 2021, 157, 112600.	3.6	11
98	TCDD adsorbed on silica as a model for TCDD contaminated soils: Evidence for suppression of humoral immunity in mice. Toxicology, 2011, 282, 82-87.	4.2	9
99	Suppression by Δ9-tetrahydrocannabinol of the primary immunoglobulin M response by human peripheral blood B cells is associated with impaired STAT3 activation. Toxicology, 2013, 310, 84-91.	4.2	9
100	TCDD administered on activated carbon eliminates bioavailability and subsequent shifts to a key murine gut commensal. Applied Microbiology and Biotechnology, 2017, 101, 7409-7415.	3.6	9
101	Factors Affecting Urinary tt-Muconic Acid Detection among Benzene Exposed Workers at Gasoline Stations. International Journal of Environmental Research and Public Health, 2019, 16, 4209.	2.6	9
102	Suppression of humoral immune responses by 2,3,7,8â€ŧetrachlorodibenzoâ€ <i>p</i> â€dioxin intercalated in smectite clay. Environmental Toxicology and Chemistry, 2011, 30, 2748-2755.	4.3	8
103	SHP-1 is directly activated by the aryl hydrocarbon receptor and regulates BCL-6 in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicology and Applied Pharmacology, 2016, 310, 41-50.	2.8	8
104	TCDD-mediated suppression of naÃ⁻ve human B cell IgM secretion involves aryl hydrocarbon receptor-mediated reduction in STAT3 serine 727 phosphorylation and is restored by interferon-γ. Cellular Signalling, 2020, 65, 109447.	3.6	8
105	Δ9-Tetrahydrocannabinol (THC) Impairs CD8+ T Cell-Mediated Activation of Astrocytes. Journal of NeuroImmune Pharmacology, 2020, 15, 863-874.	4.1	8
106	The role of metabolism in carbon tetrachloride-mediated immunosuppression. In vitro studies. Toxicology, 1992, 75, 175-188.	4.2	7
107	TCDD-Mediated Suppression of the In Vitro Anti-Sheep Erythrocyte IgM Antibody Forming Cell Response is Reversed by Interferon-Gamma. Toxicological Sciences, 2009, 107, 85-92.	3.1	7
108	Upholding science in health, safety and environmental risk assessments and regulations. Toxicology, 2016, 371, 12-16.	4.2	7

#	Article	IF	CITATIONS
109	Natural organic matter does not diminish the mammalian bioavailability of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chemosphere, 2021, 264, 128420.	8.2	7
110	Immunomodulation by cannabinoids: Current uses, mechanisms, and identification of data gaps to be addressed for additional therapeutic application. Advances in Pharmacology, 2021, 91, 1-59.	2.0	7
111	CRACC-targeting Fc-fusion protein induces activation of NK cells and DCs and improves T cell immune responses to antigenic targets. Vaccine, 2016, 34, 3109-3118.	3.8	6
112	Application of gene specific mRNA level determinations in individual cells using flow cytometry-based PrimeFlowâ,,¢ in immunotoxicology. Toxicology and Applied Pharmacology, 2017, 337, 39-44.	2.8	6
113	Activated carbons of varying pore structure eliminate the bioavailability of 2,3,7,8-tetrachlorodibenzo-p-dioxin to a mammalian (mouse) model. Science of the Total Environment, 2019, 650, 2231-2238.	8.0	6
114	Surface translocator protein 18 kDa (TSPO) localization on immune cells upon stimulation with LPS and in ART-treated HIV+ subjects. Journal of Leukocyte Biology, 2021, 110, 123-140.	3.3	6
115	Exposure to benzene and toluene of gasoline station workers in Khon Kaen, Thailand and adverse effects. Human and Ecological Risk Assessment (HERA), 2021, 27, 1823-1837.	3.4	6
116	Differential Modulation by Delta9-Tetrahydrocannabinol (â^†9-THC) of CD40 Ligand (CD40L) Expression in Activated Mouse Splenic CD4+ T cells. Journal of NeuroImmune Pharmacology, 2012, 7, 969-980.	4.1	5
117	Characterizing <i>Serpinb2</i> as a Modulator of TCDD-Induced Suppression of the B Cell. Chemical Research in Toxicology, 2018, 31, 1248-1259.	3.3	5
118	Computerized Cognitive Rehabilitation Training for Ugandan Seniors Living with HIV: A Validation Study. Journal of Clinical Medicine, 2020, 9, 2137.	2.4	5
119	Identification of a Sensitive Human Immunological Target of Aryl Hydrocarbon Receptor Activation: CD5+ Innate-Like B Cells. Frontiers in Immunology, 2021, 12, 635748.	4.8	5
120	Obfuscating transparency?. Regulatory Toxicology and Pharmacology, 2018, 97, A1-A3.	2.7	2
121	MicroRNA-based host response to toxicant exposure is influenced by the presence of gut microbial populations. Science of the Total Environment, 2021, 797, 149130.	8.0	2
122	Signal peptide and denaturing temperature are critical factors for efficient mammalian expression and immunoblotting of cannabinoid receptors. Journal of Huazhong University of Science and Technology [Medical Sciences], 2012, 32, 299-302.	1.0	1
123	The challenges ahead in immunotoxicity assessment: An inÂvitro model of human leukopoiesis. Current Opinion in Toxicology, 2017, 5, 28-32.	5.0	1
124	Role of Programmed Cell Death Protein-1 and Lymphocyte Specific Protein Tyrosine Kinase in the Aryl Hydrocarbon Receptor- Mediated Impairment of the IgM Response in Human CD5+ Innate-Like B Cells. Frontiers in Immunology, 2022, 13, 884203.	4.8	1
125	Interactions at a dioxin responsive element (DRE) and an overlapping \$kappa;B site within the hs4 domain of the 3\$prime;\$alpha; immunoglobulin heavy chain enhancer. Toxicology, 2004, 200, 235-235.	4.2	Ο
126	Editorial. Regulatory Toxicology and Pharmacology, 2019, 101, A1-A2.	2.7	0