Scott Diddams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3422134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis. Science, 2000, 288, 635-639.	6.0	2,344
2	Microresonator-Based Optical Frequency Combs. Science, 2011, 332, 555-559.	6.0	1,685
3	Frequency Ratio of Al ⁺ and Hg ⁺ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place. Science, 2008, 319, 1808-1812.	6.0	1,185
4	Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb. Physical Review Letters, 2000, 84, 5102-5105.	2.9	1,030
5	Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 2007, 445, 627-630.	13.7	659
6	Generation of ultrastable microwaves via optical frequency division. Nature Photonics, 2011, 5, 425-429.	15.6	643
7	An Optical Clock Based on a Single Trapped 199Hg+ Ion. Science, 2001, 293, 825-828.	6.0	607
8	An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81-85.	13.7	550
9	The evolving optical frequency comb [Invited]. Journal of the Optical Society of America B: Optical Physics, 2010, 27, B51.	0.9	507
10	Sr Lattice Clock at 1 × 10 ^{–16} Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock. Science, 2008, 319, 1805-1808.	6.0	500
11	Microresonator frequency comb optical clock. Optica, 2014, 1, 10.	4.8	367
12	Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. Optics Letters, 2004, 29, 250.	1.7	362
13	Architecture for the photonic integration of an optical atomic clock. Optica, 2019, 6, 680.	4.8	346
14	Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber. Physical Review Letters, 2003, 90, 113904.	2.9	329
15	Soliton crystals in Kerr resonators. Nature Photonics, 2017, 11, 671-676.	15.6	300
16	Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science, 2020, 369, .	6.0	294
17	Optical Frequency Synthesis and Comparison with Uncertainty at the 10-19 Level. Science, 2004, 303, 1843-1845.	6.0	292
18	State of the Field: Extreme Precision Radial Velocities. Publications of the Astronomical Society of the Pacific, 2016, 128, 066001.	1.0	253

#	Article	IF	CITATIONS
19	Single-Atom Optical Clock with High Accuracy. Physical Review Letters, 2006, 97, 020801.	2.9	251
20	High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nature Photonics, 2018, 12, 202-208.	15.6	250
21	Absolute Frequency Measurements of theHg+and Ca Optical Clock Transitions with a Femtosecond Laser. Physical Review Letters, 2001, 86, 4996-4999.	2.9	241
22	Spin- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:math> Optical Lattice Clock. Physical Review Letters, 2009, 103, 063001.	2.9	237
23	Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 2017, 4, 193.	4.8	235
24	Testing the Stability of Fundamental Constants with theHg+199Single-Ion Optical Clock. Physical Review Letters, 2003, 90, 150802.	2.9	228
25	Standards of Time and Frequency at the Outset of the 21st Century. Science, 2004, 306, 1318-1324.	6.0	216
26	Observation of theS01→P03Clock Transition inAl+27. Physical Review Letters, 2007, 98, 220801.	2.9	196
27	Searching for exoplanets using a microresonator astrocomb. Nature Photonics, 2019, 13, 25-30.	15.6	194
28	Octave-spanning Ti:sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons. Optics Letters, 2006, 31, 1011.	1.7	185
29	10-GHz Self-Referenced Optical Frequency Comb. Science, 2009, 326, 681-681.	6.0	185
30	Precision Atomic Spectroscopy for Improved Limits on Variation of the Fine Structure Constant and Local Position Invariance. Physical Review Letters, 2007, 98, 070801.	2.9	184
31	Dispersion measurements with white-light interferometry. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 1120.	0.9	175
32	Propagation Dynamics of Intense Femtosecond Pulses: Multiple Splittings, Coalescence, and Continuum Generation. Physical Review Letters, 1999, 82, 1430-1433.	2.9	170
33	Delivery of high-stability optical and microwave frequency standards over an optical fiber network. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 1459.	0.9	167
34	Molecular fingerprinting with bright, broadband infrared frequency combs. Optica, 2018, 5, 727.	4.8	160
35	Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb. Optics Express, 2012, 20, 6631.	1.7	154
36	Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Physical Review A, 2011, 84, .	1.0	148

#	Article	IF	CITATIONS
37	The absolute frequency of the ⁸⁷ Sr optical clock transition. Metrologia, 2008, 45, 539-548.	0.6	139
38	Electro-optical frequency division and stable microwave synthesis. Science, 2014, 345, 309-313.	6.0	138
39	Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. Optics Letters, 2005, 30, 667.	1.7	137
40	Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nature Photonics, 2016, 10, 516-520.	15.6	133
41	Thermal and Nonlinear Dissipative-Soliton Dynamics in Kerr-Microresonator Frequency Combs. Physical Review Letters, 2018, 121, 063902.	2.9	133
42	Optical Lattice Induced Light Shifts in an Yb Atomic Clock. Physical Review Letters, 2008, 100, 103002.	2.9	132
43	Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. Optics Express, 2015, 23, 26814.	1.7	131
44	Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes. IEEE Photonics Journal, 2011, 3, 140-151.	1.0	128
45	Passively mode-locked 10 GHz femtosecond Ti:sapphire laser. Optics Letters, 2008, 33, 1905.	1.7	124
46	Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb. Optics Letters, 2011, 36, 1578.	1.7	122
47	The habitable-zone planet finder: a stabilized fiber-fed NIR spectrograph for the Hobby-Eberly Telescope. Proceedings of SPIE, 2012, , .	0.8	121
48	Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator. Optics Letters, 2002, 27, 1842.	1.7	115
49	Coherent Optical Phase Transfer over a 32-km Fiber with 1Ås Instability at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mo>â^²</mml:mo><mml:mn>17Physical Powiew Letters, 2007, 99, 153601</mml:mn></mml:mrow></mml:msup></mml:math 	ml:m³³> <td>ıml:mrow><!--</td--></td>	ıml:mrow> </td
50	Electronic synthesis of light. Optica, 2017, 4, 406.	4.8	115
51	Ultrafast electro-optic light with subcycle control. Science, 2018, 361, 1358-1363.	6.0	114
52	High-resolution spectroscopy with a femtosecond laser frequency comb. Optics Letters, 2005, 30, 1734.	1.7	111
53	Low-noise synthesis of microwave signals from an optical source. Electronics Letters, 2005, 41, 650.	0.5	107
54	Astronomical spectrograph calibration with broad-spectrum frequency combs. European Physical Journal D, 2008, 48, 57-66.	0.6	107

#	Article	IF	CITATIONS
55	Hybrid Electro-Optically Modulated Microcombs. Physical Review Letters, 2012, 109, 263901.	2.9	107
56	Self-Injection Locking and Phase-Locked States in Microresonator-Based Optical Frequency Combs. Physical Review Letters, 2014, 112, 043905.	2.9	107
57	Optical frequency standards and measurements. IEEE Journal of Quantum Electronics, 2001, 37, 1502-1513.	1.0	104
58	Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter. Nature Photonics, 2007, 1, 283-287.	15.6	103
59	Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Optics Letters, 2012, 37, 3285.	1.7	102
60	Stabilization of femtosecond laser frequency combs with subhertz residual linewidths. Optics Letters, 2004, 29, 1081.	1.7	101
61	Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb. Optics Express, 2009, 17, 3331.	1.7	100
62	Infrared electric field sampled frequency comb spectroscopy. Science Advances, 2019, 5, eaaw8794.	4.7	100
63	Probing Interactions Between Ultracold Fermions. Science, 2009, 324, 360-363.	6.0	99
64	Dual-microcavity narrow-linewidth Brillouin laser. Optica, 2015, 2, 225.	4.8	96
65	Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber. Applied Physics B: Lasers and Optics, 2003, 77, 269-277.	1.1	95
66	Photonic chip for laser stabilization to an atomic vapor with 10 ^{â^'11} instability. Optica, 2018, 5, 443.	4.8	95
67	Observation and Absolute Frequency Measurements of theS01-P03Optical Clock Transition in Neutral Ytterbium. Physical Review Letters, 2005, 95, 083003.	2.9	94
68	Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains. Nature Photonics, 2013, 7, 290-293.	15.6	94
69	A 12.5 GHz-spaced optical frequency comb spanning >400â€,nm for near-infrared astronomical spectrograph calibration. Review of Scientific Instruments, 2010, 81, 063105.	0.6	93
70	Dispersion measurements of water with white-light interferometry. Applied Optics, 1998, 37, 5679.	2.1	90
71	Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider. Optics Letters, 2011, 36, 3260.	1.7	90
72	Ultrabroadband Supercontinuum Generation and Frequency-Comb Stabilization Using On-Chip Waveguides with Both Cubic and Quadratic Nonlinearities. Physical Review Applied, 2017, 8, .	1.5	90

#	Article	IF	CITATIONS
73	Optical frequency measurements of6sS1â^•22â^'6pP1â^•22(D1)transitions inCs133and their impact on the fine-structure constant. Physical Review A, 2006, 73, .	1.0	89
74	High-power broadband laser source tunable from 30 μm to 44 μmbased on a femtosecond Yb:fiber oscillator. Optics Letters, 2011, 36, 4020.	1.7	89
75	Photonic microwave generation with high-power photodiodes. Optics Letters, 2013, 38, 1712.	1.7	89
76	Spiral resonators for on-chip laser frequency stabilization. Nature Communications, 2013, 4, 2468.	5.8	89
77	Brillouin-Enhanced Hyperparametric Generation of an Optical Frequency Comb in a Monolithic Highly Nonlinear Fiber Cavity Pumped by a cw Laser. Physical Review Letters, 2009, 102, 193902.	2.9	87
78	Coherent optical clock down-conversion for microwave frequencies with 10 ^{â^'18} instability. Science, 2020, 368, 889-892.	6.0	86
79	Stellar spectroscopy in the near-infrared with a laser frequency comb. Optica, 2019, 6, 233.	4.8	86
80	Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media. Optics Letters, 1998, 23, 379.	1.7	85
81	The Habitable-zone Planet Finder: A status update on the development of a stabilized fiber-fed near-infrared spectrograph for the for the Hobby-Eberly telescope. Proceedings of SPIE, 2014, , .	0.8	83
82	Femtosecond-laser-based optical clockwork with instability â‰ ø 3 × 10^–16 in 1 s. Optics Letters, 2002, 27, 58.	1.7	82
83	Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Optics Letters, 2017, 42, 2314.	1.7	80
84	Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 1059-1065.	1.9	79
85	Broadband dispersion-engineered microresonator on a chip. Nature Photonics, 2016, 10, 316-320.	15.6	79
86	Parametric seeding of a microresonator optical frequency comb. Optics Express, 2013, 21, 17615.	1.7	77
87	Control and readout of a superconducting qubit using a photonic link. Nature, 2021, 591, 575-579.	13.7	77
88	Frequency evaluation of the doubly forbiddenS01→P03transition in bosonicYb174. Physical Review A, 2008, 77, .	1.0	76
89	Laser-machined ultra-high-Q microrod resonators for nonlinear optics. Applied Physics Letters, 2013, 102, .	1.5	74
90	Heterogeneously Integrated GaAs Waveguides on Insulator for Efficient Frequency Conversion. Laser and Photonics Reviews, 2018, 12, 1800149.	4.4	73

#	Article	IF	CITATIONS
91	Phase steps and resonator detuning measurements in microresonator frequency combs. Nature Communications, 2015, 6, 5668.	5.8	72
92	Study of the excess noise associated with demodulation of ultra-short infrared pulses. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1068-1074.	1.7	71
93	Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects. Physical Review A, 1998, 58, 3303-3310.	1.0	68
94	Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb. Optics Letters, 2000, 25, 186.	1.7	68
95	Broadband optical frequency comb generation with a phase-modulated parametric oscillator. Optics Letters, 1999, 24, 1747.	1.7	67
96	Double Gires–Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers. Optics Letters, 2000, 25, 275.	1.7	67
97	Precision phase control of an ultrawide-bandwidth femtosecond laser: a network of ultrastable frequency marks across the visible spectrum. Optics Letters, 2000, 25, 1675.	1.7	67
98	Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology. IEEE Journal of Quantum Electronics, 2001, 37, 1482-1492.	1.0	67
99	Toward a low-jitter 10 GHz pulsed source with an optical frequency comb generator. Optics Express, 2008, 16, 8498.	1.7	67
100	Single-branch Er:fiber frequency comb for precision optical metrology with 10^â^'18 fractional instability. Optica, 2017, 4, 879.	4.8	67
101	Mode-locked laser pulse trains with subfemtosecond timing jitter synchronized to an optical reference oscillator. Optics Letters, 2003, 28, 663.	1.7	64
102	A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nature Photonics, 2021, 15, 281-286.	15.6	63
103	Noise Floor Reduction of an Er:Fiber Laser-Based Photonic Microwave Generator. IEEE Photonics Journal, 2011, 3, 1004-1012.	1.0	61
104	Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies. Optics Letters, 2000, 25, 308.	1.7	60
105	Supercontinuum generation in an on-chip silica waveguide. Optics Letters, 2014, 39, 1046.	1.7	60
106	Optical-Frequency Measurements with a Kerr Microcomb and Photonic-Chip Supercontinuum. Physical Review Applied, 2018, 9, .	1.5	60
107	Self-organized nonlinear gratings for ultrafast nanophotonics. Nature Photonics, 2019, 13, 494-499.	15.6	60
108	Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 1072-1080.	1.9	59

#	Article	IF	CITATIONS
109	Coherent ultra-violet to near-infrared generation in silica ridge waveguides. Nature Communications, 2017, 8, 13922.	5.8	59
110	Interlocking Kerr-microresonator frequency combs for microwave to optical synthesis. Optics Letters, 2018, 43, 2933.	1.7	59
111	Optical frequency/wavelength references. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, S469-S495.	0.6	54
112	Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication. Optics Letters, 2009, 34, 872.	1.7	54
113	Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency. European Physical Journal D, 2008, 48, 19-26.	0.6	52
114	Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy. Nature Communications, 2016, 7, 10436.	5.8	52
115	Attosecond timing in optical-to-electrical conversion. Optica, 2015, 2, 141.	4.8	50
116	Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation. Optics Letters, 2017, 42, 1277.	1.7	49
117	Terahertz-Rate Kerr-Microresonator Optical Clockwork. Physical Review X, 2019, 9, .	2.8	49
118	Direct Kerr frequency comb atomic spectroscopy and stabilization. Science Advances, 2020, 6, eaax6230.	4.7	49
119	Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor. Physical Review A, 2010, 81, .	1.0	48
120	Mechanical Control of a Microrod-Resonator Optical Frequency Comb. Physical Review X, 2013, 3, .	2.8	48
121	High-harmonic generation in periodically poled waveguides. Optica, 2017, 4, 1538.	4.8	48
122	Frequency Uncertainty for Optically Referenced Femtosecond Laser Frequency Combs. IEEE Journal of Quantum Electronics, 2007, 43, 139-146.	1.0	47
123	Optical-to-microwave frequency comparison with fractional uncertainty of 10-15. Applied Physics B: Lasers and Optics, 2007, 89, 167-176.	1.1	46
124	Kilohertz-Resolution Spectroscopy of Cold Atoms with an Optical Frequency Comb. Physical Review Letters, 2006, 97, 163905.	2.9	45
125	A HIGH-RESOLUTION ATLAS OF URANIUM-NEON IN THE <i>H</i> BAND. Astrophysical Journal, Supplement Series, 2012, 199, 2.	3.0	45
126	Frequency-comb spectroscopy on pure quantum states of a single molecular ion. Science, 2020, 367, 1458-1461.	6.0	45

#	Article	IF	CITATIONS
127	Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser. Optics Letters, 2007, 32, 2553.	1.7	44
128	A deep-UV optical frequency comb at 205 nm. Optics Express, 2009, 17, 9183.	1.7	43
129	High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2Âμm wavelength region. Optics Letters, 2012, 37, 1400.	1.7	43
130	Analysis of shot noise in the detection of ultrashort optical pulse trains. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1775.	0.9	43
131	Optically referenced broadband electronic synthesizer with 15 digits of resolution. Laser and Photonics Reviews, 2016, 10, 780-790.	4.4	43
132	Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides. Optics Letters, 2018, 43, 1678.	1.7	43
133	420-MHz Cr:forsterite femtosecond ring laser and continuum generation in the 1-2-μm range. Optics Letters, 2003, 28, 1368.	1.7	42
134	Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO_3 waveguide. Optics Letters, 2012, 37, 4332.	1.7	42
135	Tuning Kerr-Soliton Frequency Combs to Atomic Resonances. Physical Review Applied, 2019, 11, .	1.5	42
136	Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon. Optica, 2019, 6, 1246.	4.8	41
137	Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser. Optics Letters, 2005, 30, 932.	1.7	40
138	spectroscopy in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:mmultiscripts> <mml:mtext>r</mml:mtext> <mml:mprescripts /> <mml:mrow> <mml:mp>87</mml:mp> </mml:mrow> </mml:mprescripts </mml:mmultiscripts> <mml:mtext> <mml:mtext> ubidium </mml:mtext></mml:mtext></mml:mrow></mml:math>	1.0	40 wysc/mml·m
139	Physical Review A, 2009, 80, . Sub-femtosecond absolute timing jitter with a 10 GHz hybrid photonic-microwave oscillator. Applied Physics Letters, 2012, 100, .	1.5	40
140	Deuterated silicon nitride photonic devices for broadband optical frequency comb generation. Optics Letters, 2018, 43, 1527.	1.7	40
141	Photonic-Chip Supercontinuum with Tailored Spectra for Counting Optical Frequencies. Physical Review Applied, 2017, 8, .	1.5	40
142	Noise properties of microwave signals synthesized with femtosecond lasers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 736-745.	1.7	39
143	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msup><mml:mi>l̈t</mml:mi><mml:mrow><mml:mo stretchy="false">(<mml:mn>2</mml:mn><mml:mo) 0.784314="" 1="" 10="" 50="" 92<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>Ta (stret</td><td>ch$\frac{32}{2}$"false"></td></mml:mo)></mml:mo </mml:mrow></mml:msup>	Ta (stret	ch $\frac{32}{2}$ "false">
144	Letters, 2020, 124, 133904. Infrared frequency comb generation and spectroscopy with suspended silicon nanophotonic waveguides. Optica, 2019, 6, 1269.	4.8	39

#	Article	IF	CITATIONS
145	Absolute frequency measurement of the neutral40Ca optical frequency standard at 657 nm based on microkelvin atoms. Metrologia, 2007, 44, 146-151.	0.6	38
146	Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser. Applied Physics B: Lasers and Optics, 2012, 107, 31-39.	1.1	37
147	High-Power and High-Linearity Photodetector Modules for Microwave Photonic Applications. Journal of Lightwave Technology, 2014, 32, 3810-3816.	2.7	37
148	Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy. APL Photonics, 2018, 3, .	3.0	37
149	Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb. Applied Physics B: Lasers and Optics, 2015, 119, 327-338.	1.1	36
150	The measurement of optical frequencies. Metrologia, 2005, 42, S105-S124.	0.6	35
151	Optical amplification and pulse interleaving for low-noise photonic microwave generation. Optics Letters, 2014, 39, 1581.	1.7	35
152	Quasi-Phase-Matched Supercontinuum Generation in Photonic Waveguides. Physical Review Letters, 2018, 120, 053903.	2.9	34
158	Broadband phase-coherent optical frequency synthesis with actively linked Ti:sapphire and Cr:forsterite femtosecond lasers. Optics Letters, 2004, 29, 403.	1.7	33
154	Persistent Starspot Signals on M Dwarfs: Multiwavelength Doppler Observations with the Habitable-zone Planet Finder and Keck/HIRES. Astrophysical Journal, 2020, 897, 125.	1.6	32
158	Differential intracavity phase spectroscopy and its application to a three-level system in samarium. Physical Review A, 1998, 58, 2252-2264.	1.0	30
156	Improved stabilization of a 13 Âμm femtosecond optical frequency comb by use of a spectrally tailored continuum from a nonlinear fiber grating. Optics Letters, 2006, 31, 277.	1.7	30
157	Generation of a 660–2100 nm laser frequency comb based on an erbium fiber laser. Optics Letters, 2012, 37, 2199.	1.7	30
158	30  GHz electro-optic frequency comb spanning 300  THz in the near infrared and visible. Optics 2019, 44, 2673.	s Letters, 1.7	30
159	Broadband Noise Limit in the Photodetection of Ultralow Jitter Optical Pulses. Physical Review Letters, 2014, 113, 203901.	2.9	28
160	Optical-Clock-Based Time Scale. Physical Review Applied, 2019, 12, .	1.5	28
161	Optical frequency measurements of6sS1â^•22–6pP3â^•22transition in aCs133atomic beam using a femtosecond laser frequency comb. Physical Review A, 2004, 70, .	1.0	27
162	2 Coherent frequency combs for spectroscopy across the 3–5 µm region. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	27

#	Article	IF	CITATIONS
163	Direct comparison of two cold-atom-based optical frequency standards by using a femtosecond-laser comb. Optics Letters, 2001, 26, 102.	1.7	26
164	A microrod-resonator Brillouin laser with 240 Hz absolute linewidth. New Journal of Physics, 2016, 18, 045001.	1.2	25
165	Stellar Activity Manifesting at a One-year Alias Explains Barnard b as a False Positive. Astronomical Journal, 2021, 162, 61.	1.9	25
166	Tunable mid-infrared generation via wide-band four-wave mixing in silicon nitride waveguides. Optics Letters, 2018, 43, 4220.	1.7	24
167	High-performance, compact optical standard. Optics Letters, 2021, 46, 4702.	1.7	24
168	Mid-infrared frequency combs at 10  GHz. Optics Letters, 2020, 45, 3677.	1.7	24
169	Complete characterization of femtosecond pulses using an all-electronic detector. Optics Communications, 1996, 123, 567-573.	1.0	23
170	Characterizing the nonlinear propagation of femtosecond pulses in bulk media. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4, 306-316.	1.9	23
171	Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb. Optics Express, 2011, 19, 18440.	1.7	23
172	State-of-the-art RF signal generation from optical frequency division. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 1796-1803.	1.7	23
173	Noise and dynamics of stimulated-Brillouin-scattering microresonator lasers. Physical Review A, 2015, 91, .	1.0	23
174	Broadband ultraviolet-visible frequency combs from cascaded high-harmonic generation in quasi-phase-matched waveguides. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2252.	0.9	23
175	Recent atomic clock comparisons at NIST. European Physical Journal: Special Topics, 2008, 163, 19-35.	1.2	22
176	Dual-comb interferometry via repetition rate switching of a single frequency comb. Optics Letters, 2018, 43, 3614.	1.7	22
177	A Warm Jupiter Transiting an M Dwarf: A TESS Single-transit Event Confirmed with the Habitable-zone Planet Finder. Astronomical Journal, 2020, 160, 147.	1.9	22
178	Frequency measurements and hyperfine structure of the R(85)33–O transition of molecular iodine with a femtosecond optical comb. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 88.	0.9	21
179	1-GHz repetition rate femtosecond OPO with stabilized offset between signal and idler frequency combs. Optics Express, 2008, 16, 5397.	1.7	21
180	Fully self-referenced frequency comb consuming 5 watts of electrical power. OSA Continuum, 2018, 1, 274.	1.8	21

#	Article	IF	CITATIONS
181	Fully phase-stabilized 1 GHz turnkey frequency comb at 156 µm. OSA Continuum, 2020, 3, 2070.	1.8	21
182	Chromium-doped forsterite: dispersion measurement with white-light interferometry. Applied Optics, 2003, 42, 1661.	2.1	20
183	xmins:mmi= http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	1.0	20
184	Experimental study of noise properties of a Ti:sapphire femtosecond laser. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50, 355-360.	1.7	19
185	Absolute-frequency measurements with a stabilized near-infrared optical frequency comb from a Cr:forsterite laser. Optics Letters, 2004, 29, 397. Absolute and Relative Stability of an Optical Frequency Reference Based on Spectral Hole Burning	1.7	19
186	in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msup><mml:mi>Eu</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mo mathvariant="bold">+</mml:mo </mml:mrow></mml:msup><mml:mtext mathvariant="normal">:<mml:msub><mml:mi< td=""><td>2.9</td><td>19</td></mml:mi<></mml:msub></mml:mtext </mml:math>	2.9	19
187	mathvariant="bold">Y <mml:mn>2</mml:mn> <mml:msub><mml:mi>SiO</mml:mi><mm TOI-1728b: The Habitable-zone Planet Finder Confirms a Warm Super-Neptune Orbiting an M-dwarf Host. Astrophysical Journal, 2020, 899, 29.</mm </mml:msub>	l:mn>51.6	nml:mn>19
188	Optical frequency measurements with the global positioning system: tests with an iodine-stabilized He–Ne laser. Applied Optics, 2005, 44, 113.	2.1	18
189	Tunable resolution terahertz dual frequency comb spectrometer. Optics Express, 2016, 24, 30100.	1.7	18
190	Single-cycle all-fiber frequency comb. APL Photonics, 2021, 6, 086110.	3.0	18
191	Nondetection of Helium in the Upper Atmospheres of TRAPPIST-1b, e, and f*. Astronomical Journal, 2021, 162, 82.	1.9	18
192	A proposed laser frequency comb-based wavelength reference for high-resolution spectroscopy. Proceedings of SPIE, 2007, , .	0.8	17
193	A frequency-stabilized Yb:KYW femtosecond laser frequency comb and its application to low-phase-noise microwave generation. Applied Physics B: Lasers and Optics, 2013, 112, 565-570.	1.1	17
194	Phase and coherence of optical microresonator frequency combs. Physical Review A, 2014, 89, .	1.0	17
195	Optimizing the linearity in high-speed photodiodes. Optics Express, 2018, 26, 30532.	1.7	17
196	Compact femtosecond-laser-based optical clockwork. , 2001, 4269, 77.		16
197	Direct RF to optical frequency measurements with a femtosecond laser comb. IEEE Transactions on Instrumentation and Measurement, 2001, 50, 552-555.	2.4	16
198	The199HgÂsingle ion optical clock: recent progress. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 545-551.	0.6	16

#	Article	IF	CITATIONS
199	Low-noise synthesis of microwave and millimetre-wave signals with optical frequency comb generator. Electronics Letters, 2009, 45, 170.	0.5	16
200	Generation of a 20 GHz train of subpicosecond pulses with a stabilized optical-frequency-comb generator. Optics Letters, 2009, 34, 85.	1.7	16
201	Rapid, broadband spectroscopic temperature measurement of \$\$hbox {CO}_2\$\$ using VIPA spectroscopy. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	16
202	A Mini-Neptune and a Radius Valley Planet Orbiting the Nearby M2 Dwarf TOI-1266 in Its Venus Zone: Validation with the Habitable-zone Planet Finder. Astronomical Journal, 2020, 160, 259.	1.9	16
203	Mid-infrared frequency comb with 6.7 W average power based on difference frequency generation. Optics Letters, 2020, 45, 1248.	1.7	15
204	Tunable, stable source of femtosecond pulses near 2 μm via supercontinuum of an Erbium mode-locked laser. Optics Express, 2014, 22, 28400.	1.7	14
205	Microresonator Brillouin laser stabilization using a microfabricated rubidium cell. Optics Express, 2016, 24, 14513.	1.7	14
206	TOI-532b: The Habitable-zone Planet Finder confirms a Large Super Neptune in the Neptune Desert orbiting a metal-rich M-dwarf host. Astronomical Journal, 2021, 162, 135.	1.9	14
207	Dynamics of self-focused femtosecond laser pulses in the near and far fields. Optics Express, 1999, 4, 336.	1.7	13
208	International Comparisons of Femtosecond Laser Frequency Combs. IEEE Transactions on Instrumentation and Measurement, 2005, 54, 746-749.	2.4	13
209	Pump frequency noise coupling into a microcavity by thermo-optic locking. Optics Express, 2014, 22, 14559.	1.7	13
210	Thermal-light heterodyne spectroscopy with frequency comb calibration. Optica, 2022, 9, 221.	4.8	13
211	Optical frequency standards based on mercury and aluminum ions. Proceedings of SPIE, 2007, , .	0.8	12
212	Grism-based pulse shaper for line-by-line control of more than 600 optical frequency comb lines. Optics Letters, 2010, 35, 3264.	1.7	12
213	All-fiber frequency comb at 2  µm providing 1.4-cycle pulses. Optics Letters, 2020, 45, 2660.	1.7	12
214	Chip-scale optical resonator enabled synthesizer (CORES) miniature systems for optical frequency synthesis. , 2016, , .		11
215	Octave-spanning supercontinuum generation via microwave frequency multiplication. Journal of Physics: Conference Series, 2016, 723, 012035.	0.3	10
216	Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator. Electronics Letters, 2015, 51, 1596-1598.	0.5	9

#	Article	IF	CITATIONS
217	Frequency stability characterization of a broadband fiber Fabry-Pérot interferometer. Optics Express, 2017, 25, 15599.	1.7	9
218	Microrod Optical Frequency Reference in the Ambient Environment. Physical Review Applied, 2019, 12, .	1.5	9
219	A low-threshold self-referenced Ti:Sapphire optical frequency comb. Optics Express, 2006, 14, 9531.	1.7	8
220	Measurement of excited-state transitions in cold calcium atoms by direct femtosecond frequency-comb spectroscopy. Physical Review A, 2007, 75, .	1.0	8
221	Phase-dependent interference between frequency doubled comb lines in a χ^(2) phase-matched aluminum nitride microring. Optics Letters, 2016, 41, 3747.	1.7	8
222	Broadband Stability of the Habitable Zone Planet Finder Fabry–Pérot Etalon Calibration System: Evidence for Chromatic Variation. Astronomical Journal, 2021, 161, 252.	1.9	8
223	The Habitable-zone Planet Finder Detects a Terrestrial-mass Planet Candidate Closely Orbiting Gliese 1151: The Likely Source of Coherent Low-frequency Radio Emission from an Inactive Star. Astrophysical Journal Letters, 2021, 919, L9.	3.0	8
224	Versatile digital approach to laser frequency comb stabilization. OSA Continuum, 2019, 2, 3262.	1.8	8
225	High-resolution Near-infrared Spectroscopy of a Flare around the Ultracool Dwarf vB 10. Astrophysical Journal, 2022, 925, 155.	1.6	8
226	Investigating nonlinear femtosecond pulse propagation with frequency-resolved optical gating. IEEE Journal of Quantum Electronics, 1999, 35, 451-458.	1.0	7
227	Optical frequency standards based on the /sup 199/Hg/sup +/ ion. IEEE Transactions on Instrumentation and Measurement, 2003, 52, 245-249.	2.4	7
228	Stable Laser System for Probing the Clock Transition at 578 nm in Neutral Ytterbium. Frequency Control Symposium and Exhibition, Proceedings of the IEEE International, 2007, , .	0.0	7
229	Reduction of Flicker Phase Noise in High-Speed Photodetectors Under Ultrashort Pulse Illumination. IEEE Photonics Journal, 2021, 13, 1-12.	1.0	7
230	Towards an Integrated-Photonics Optical-Frequency Synthesizer With <1 Hz Residual Frequency Noise. , 2017, , .		7
231	Introduction to the issue on stabilization of mode-locked lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 969-971.	1.9	6
232	Fiber laser-based frequency combs with high relative frequency stability. Frequency Control Symposium and Exhibition, Proceedings of the IEEE International, 2007, , .	0.0	6
233	Frequency locking and unlocking in a femtosecond ring laser with application to intracavity phase measurements. Applied Physics B: Lasers and Optics, 1996, 63, 473-480.	1.1	6
234	Frequency stability of the mode spectrum of broad bandwidth Fabry-Pérot interferometers. OSA Continuum, 2020, 3, 1177.	1.8	6

#	Article	IF	CITATIONS
235	Rotational Modulation of Spectroscopic Zeeman Signatures in Low-mass Stars. Astrophysical Journal Letters, 2022, 927, L11.	3.0	6
236	Characterization of frequency noise on a broadband infrared frequency comb using optical heterodyne techniques. Optics Express, 2007, 15, 17715.	1.7	5
237	Measurement of gravitational time delay using drag-free spacecraft and an optical clock. Proceedings of the International Astronomical Union, 2009, 5, 414-419.	0.0	5
238	Ultra-low-noise regenerative frequency divider for high-spectral-purity RF signal generation. , 2012, , .		5
239	A near-infrared frequency comb for Y+J band astronomical spectroscopy. Proceedings of SPIE, 2012, , .	0.8	5
240	Photonic microwave generation with high-power photodiodes. , 2013, , .		5
241	The habitable-zone planet finder calibration system. Proceedings of SPIE, 2014, , .	0.8	5
242	Optical frequency synthesis using a dual-Kerr-microresonator frequency comb. , 2017, , .		5
243	Low instability, low phase-noise femtosecond optical frequency comb microwave synthesizer. , 0, , .		4
244	Noise properties of microwave signals synthesized with femtosecond lasers. , 0, , .		4
245	Downsampling of optical frequency combs. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1666.	0.9	4
246	A Harsh Test of Far-field Scrambling with the Habitable-zone Planet Finder and the Hobby–Eberly Telescope. Astrophysical Journal, 2021, 912, 15.	1.6	4
247	Impact of crosshatch patterns in H2RGs on high-precision radial velocity measurements: exploration of measurement and mitigation paths with the Habitable-Zone Planet Finder. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5, 1.	1.0	4
248	Octave-spanning dual comb spectroscopy in the molecular fingerprint region. , 2018, , .		4
249	ALPHA-DOT OR NOT: COMPARISON OF TWO SINGLE ATOM OPTICAL CLOCKS. , 2009, , .		3
250	Mid-IR frequency comb upconversion spectroscopy. , 2010, , .		3
251	Phase noise in the photodetection of ultrashort optical pulses. , 2010, , .		3

#	Article	IF	CITATIONS
253	A hybrid 10 GHz photonic-microwave oscillator with sub-femtosecond absolute timing jitter. , 2012, , .		3
254	Infrared Astronomical Spectroscopy for Radial Velocity Measurements with 10 cm/s Precision. , 2018, , .		3
255	A Hot Mars-sized Exoplanet Transiting an M Dwarf. Astronomical Journal, 2022, 163, 3.	1.9	3
256	TOI-1696 and TOI-2136: Constraining the Masses of Two Mini-Neptunes with the Habitable-Zone Planet Finder. Astronomical Journal, 2022, 163, 286.	1.9	3
257	<title>Pulse measurements without optical nonlinearities</title> ., 1994, 2116, 238.		2
258	<title>Ultrasensitive phase measurements with femtosecond ring lasers</title> ., 1995,,.		2
259	Square pulse generation in a ring dye laser. Optics Communications, 1997, 143, 252-256.	1.0	2
260	Dispersion measurements of water with white-light interferometry: errata. Applied Optics, 1999, 38, 2499.	2.1	2
261	All-optical atomic clocks. , 0, , .		2
262	Analysis of noise mechanisms limiting frequency stability of microwave signals generated with a femtosecond laser. , 0, , .		2
263	Stability Measurements of the Ca and Yb Optical Frequency Standards. , 2006, , .		2
264	Lattice-based optical clock using an even isotope of Yb. , 2007, 6673, 117.		2
265	A near infrared laser frequency comb for high precision Doppler planet surveys. EPJ Web of Conferences, 2011, 16, 02002.	0.1	2
266	Optical phase-noise dynamics of Titanium:sapphire optical frequency combs. Optics Communications, 2014, 320, 84-87.	1.0	2
267	Heterodyne-based hybrid controller for wide dynamic range optoelectronic frequency synthesis. Optics Express, 2017, 25, 29086.	1.7	2
268	Direct Kerr-frequency-comb atomic stabilization. , 2018, , .		2
269	Initiating Kerr-Soliton Frequency Combs Apart from Thermal Bistability and Mode Perturbation Effects. , 2017, , .		2
270	Self-referencing a CW laser with efficient nonlinear optics. , 2015, , .		2

#	Article	IF	CITATIONS
271	Calibration of an Astronomical Spectrograph using a 25 GHz Laser Frequency Comb. , 2011, , .		2
272	Direct RF to optical frequency measurements with a femtosecond laser comb. , 0, , .		1
273	<title>Optical frequency standards for clocks of the future</title> ., 2001, , .		1
274	Carrier-envelope phase stabilization of mode-locked lasers. , 2001, 4271, 183.		1
275	Ultra-high stability optical frequency standard based on laser-cooled neutral calcium. , 2005, , .		1
276	A 600 MHz octave-spanning femtosecond laser for optical frequency measurements and comparisons. , 2005, , .		1
277	Multi-octave optical coherence spanning hundreds of meters. , 2007, , .		1
278	Sub 6-fs Pulses Generated from a Broadband 1-GHz Ti:sapphire Oscillator. , 2007, , .		1
279	The Yb and Ca Standards: Approaches to High Stability, High Accuracy, and Transportable Optical Atomic Clocks. , 2007, , .		1
280	An optical frequency comb for infrared spectrograph calibration. , 2010, , .		1
281	FREQUENCY MEASUREMENTS OF AI+ AND Hg+ OPTICAL STANDARDS. , 2010, , .		1
282	A hybrid 10 GHz photonic-microwave oscillator with sub-femtosecond absolute timing jitter. , 2011, , .		1
283	The Influence of Cavity Dispersion on Amplitude and Frequency Noise in a Yb-fiber Laser Comb. , 2011, , .		1
284	Generation of ultralow phase noise microwaves with an Er:fiber-based optical frequency divider. , 2011, , .		1
285	Low noise microwave generation with Er:fiber laser optical frequency dividers. , 2013, , .		1
286	Optical frequency division for ultralow phase noise microwave generation. , 2013, , .		1
287	Combs grow bigger teeth. Nature Physics, 2014, 10, 8-9.	6.5	1
288	Near field modal noise reduction using annealed optical fiber. Proceedings of SPIE, 2014, , .	0.8	1

1

#	Article	IF	CITATIONS
289	Self-referencing a 10 GHz Electro-optic Comb. , 2015, , .		1
290	Mid-Infrared Optical Frequency Combs based on Difference Frequency Generation for Dual-Comb Spectroscopy. , 2015, , .		1
291	Measuring the thermal sensitivity of a fiber Fabry-PÃ ${ m f G}$ rot interferometer. , 2016, , .		1
292	Temperature dependence of nonlinearity in high-speed, high-power photodetectors. , 2017, , .		1
293	Octave-spanning long-wave infrared generation via intra-pulse difference frequency generation in orientation-patterned gallium phosphide. , 2017, , .		1
294	High-speed ultra-broadband dual-comb spectroscopy using electro-optics. , 2018, , .		1
295	Precise Control of the Pulse-to-Pulse Carrier-Envelope Phase in a Mode-Locked Laser. Springer Series in Chemical Physics, 2001, , 74-78.	0.2	1
296	Coherent on-chip spectral-engineered mid-IR frequency comb generation in Si waveguides. , 2017, , .		1
297	Nanophotonic waveguides for extreme nonlinear optics. , 2018, , .		1
298	Stabilizing multiple solitons in Kerr microresonator frequency combs. , 2016, , .		1
299	High-Speed Photodetection and Microwave Generation in a Sub-100 mK Environment. , 2019, , .		1
300	Mid-Infrared Dual Comb Spectroscopy of Propane. , 2017, , .		1
301	Atomic clocks of the future: using the ultrafast and ultrastable. Springer Series in Chemical Physics, 2003, , 170-174.	0.2	1
302	A low-dispersion Fabry-Perot cavity for generation of a 30 GHz astrocomb spanning 140 nm. , 2015, , .		1
303	Broadband Mid-Infrared Dual Comb Spectroscopy with Comb-Tooth Resolution and High Signal-To-Noise Ratio. , 2017, , .		1
304	Coherent on-chip frequency combs spanning 1.5-7.5 \hat{l} /4m for dual-comb spectroscopy. , 2018, , .		1
305	A gallium arsenide nonlinear platform on silicon. , 2018, , .		1

An Ultrafast Electro-Optic Dual Comb for Linear and Nonlinear Spectroscopy. , 2018, , .

#	Article	IF	CITATIONS
307	Near-single-cycle long-wave infrared pulses for coherent linear and nonlinear optics. , 2019, , .		1
308	<title>Capturing electromagnetic fields with femtosecond resolution</title> . , 1993, , .		0
309	<title>Instantaneous and noninstantaneous nonlinear effects in femtosecond pulse propagation</title> . , 1999, , .		Ο
310	Experimental study of noise properties of a Ti-sapphire mode-locked laser. , 0, , .		0
311	Measurements and simulations of noise imposed on supercontinuum generated in microstructure fiber. , 0, , .		0
312	The mercury-ion optical clock and the search for temporal variation of fundamental constants. , 0, , .		0
313	Optical clocks with cold atoms. , 0, , .		0
314	Optical clocks and frequency synthesis using femtosecond lasers. , 0, , .		0
315	Optical oscillators with high stability and low timing jitter. , 2005, , .		0
316	High resolution spectroscopy with a femtosecond laser frequency comb. , 2005, , .		0
317	Femtosecond Laser Frequency Combs with linewidths at the 1-Hz Level. Springer Series in Chemical Physics, 2005, , 840-842.	0.2	0
318	Optical frequency metrology using spectrally tailored continuum from a nonlinear fiber grating. , 0, ,		0
319	Optical and microwave frequency stability: some constraints. , 0, , .		Ο
320	Fibers for Continuum Generation and Frequency Metrology. , 2006, , .		0
321	Residual stability of a fiber-based frequency comb. , 2007, , .		0
322	Injection-locked femtosecond Ti:sapphire lasers. , 2007, , .		0
323	Bigger and better: the critical role of self-phase modulation in ultraprecise optical frequency combs. , 2007, , .		0
324	High-Resolution Spectroscopy with Femtosecond Optical Combs. , 2007, , .		0

#	Article	IF	CITATIONS
325	Improved Limits on Variation of the Fine Structure Constant and Violation of Local Position Invariance. Frequency Control Symposium and Exhibition, Proceedings of the IEEE International, 2007, ,	0.0	0
326	Low-Noise Microwave and Optical Waveform Synthesis with Femtosecond Laser Frequency Combs. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
327	Increasing the Mode-Spacing of Stabilized Frequency Combs with Optical Filter Cavities. LEOS Summer Topical Meeting, 2007, , .	0.0	0
328	Direct two-photon resonant excitation and absolute frequency measurement of cesium transitions using a femtosecond comb. LEOS Summer Topical Meeting, 2007, , .	0.0	0
329	Strontium optical lattice clock: 10 ^{−16} uncertainty. , 2008, , .		0
330	Time and frequency filtering of optical combs. , 2008, , .		0
331	Generation of a 150 fs pulse train at 12.5 GHz repetition rate via cavity filtering of a self-referenced frequency comb. , 2009, , .		0
332	QUANTUM METROLOGY WITH LATTICE-CONFINED ULTRACOLD SR ATOMS. , 2009, , .		0
333	Control and characterization of picosecond pulse trains from a microresonator frequency comb. , 2011, , .		0
334	Pulse mode characterization of high-power modified uni-traveling carrier photodiodes. , 2011, , .		0
335	Towards an optical frequency comb with mm-scale microresonators for distributing atomic standards. , 2011, , .		0
336	Ultra-Low Phase Noise Microwaves from Optical References. , 2011, , .		0
337	Low-Noise Remote Transfer of a Phase-Encoded Frequency Comb through a 320m Phase-Stabilized Fiber. , 2011, , .		0
338	Characterization of a difference-frequency based mid-infrared comb source. , 2011, , .		0
339	Noise floor reduction of a fiber-based photonic microwave generator by use of a mode-filtering cavity. , 2011, , .		0
340	Shot noise correlations in the detection of ultrashort optical pulses. , 2012, , .		0
341	High spectral purity microwave generation via optical division. , 2012, , .		0
342	Mechanical stabilization of frequency combs from laser machined microrod-resonators. , 2012, , .		0

#	Article	IF	CITATIONS
343	Photodetection noise reduction of a 10 GHz fiber-laser-based photonic microwave generator. , 2012, , .		О
344	Pulse-picked octave-spanning microresonator-based frequency comb for optical self-referencing. , 2013, , .		0
345	Frequency comb sources and techniques for mid-infrared spectroscopy and sensing. , 2013, , .		0
346	Microresonator frequency combs. , 2013, , .		0
347	Octave-spanning Ti:Sapphire laser with repetition rate >4 GHz. , 2013, , .		0
348	Hybrid Electro-Optic Microcombs and Frequency Domain Analysis of Modelocking in Microresonators. , 2013, , .		0
349	Low Noise Microwave Generation with High Power, High Linearity Photodiodes. , 2013, , .		0
350	Low-noise and agile X-band synthesizer based on optical frequency division. , 2014, , .		0
351	Noise and dynamics of stimulated Brillouin scattering microresonator laser oscillators. , 2014, , .		0
352	Phase Measurements and Phase-Locking in Microresonator-Based Optical Frequency Combs. , 2014, , .		0
353	Supercontinuum Generation in a Silica Spiral Waveguide. , 2014, , .		0
354	Doubly-resonant mid-infrared AgGaSe2 optical parametric oscillator. , 2014, , .		0
355	All-optical stabilization of a microresonator frequency comb. , 2014, , .		0
356	Pump frequency noise coupling into a microcavity by thermo-optic locking. , 2014, , .		0
357	Low Phase-noise Tunable Optoelectronic Comb Generator. , 2015, , .		0
358	Optical-to-electrical frequency conversion with attosecond timing. , 2015, , .		0
359	Electro-optical frequency division and stable microwave synthesis. , 2015, , .		0
360	Mid-Infrared frequency comb for rapid detection of CH4 and H2O in open air. , 2015, , .		0

Mid-Infrared frequency comb for rapid detection of CH4 and H2O in open air. , 2015, , . 360

0

#	Article	IF	CITATIONS
361	A stimulated Brillouin microresonator laser referenced to rubidium. , 2016, , .		Ο
362	Ring resonator with cascaded arrayed waveguide gratings for accurate insertion loss measurement. , 2016, , .		0
363	Er:fiber frequency comb for synthesis of optical frequencies at the 10â $$ '18level. , 2016, , .		0
364	An octave-bandwidth Kerr optical frequency comb on a silicon chip. , 2016, , .		0
365	Full stabilization and control of an integrated photonics optical frequency synthesizer. , 2017, , .		0
366	Photonic frequency synthesis from RF to THz. , 2017, , .		0
367	Octave broadening of a 15 GHz Kerr soliton comb. , 2017, , .		0
368	High Efficiency SHG in Heterogenous Integrated GaAs Ring Resonators. , 2018, , .		0
369	Infrared Electric-Field Sampled Frequency Comb Spectroscopy. , 2019, , .		0
370	A phase and frequency controlled femtosecond laser for metrology and single-cycle nonlinear optics. , 2000, , .		0
371	OPTICAL CLOCKS WITH COLD ATOMS AND STABLE LASERS. , 2004, , .		0
372	Spectral dependence of phase noise of stabilized optical frequency combs. , 2006, , .		0
373	A self-referenced diode-pumped Yb:KYW frequency comb. , 2008, , .		0
374	THE Yb OPTICAL LATTICE CLOCK. , 2009, , .		0
375	An All-Optical Resonator Stabilization Scheme with Laser Machined SiO2 Microresonators. , 2012, , .		0
376	Coherent control of microresonator comb generation via parametric-gain seeding. , 2013, , .		0
377	Stablization of fiber lasers using chip-based high-Q optical resonators. , 2013, , .		0

Electro-optical frequency division and stable microwave synthesis. , 2015, , .

#	Article	IF	CITATIONS
379	Low-Noise Stimulated Brillouin Lasing in a Microrod Resonator. , 2015, , .		Ο
380	Broadband Phase Noise Limit in the Direct Detection of Ultralow Jitter Optical Pulses. , 2015, , .		0
381	Adaptive Resolution Terahertz Dual Frequency Comb Spectroscopy. , 2016, , .		Ο
382	Silica-Chip-Based Continuum Generation for Frequency Comb Self-Referencing. , 2016, , .		0
383	Aluminum nitride microring resonator for efficient frequency comb doubling. , 2016, , .		Ο
384	Frequency Synthesis with Chip-Scale Microresonators. , 2016, , .		0
385	Frequency stabilization of a mid-infrared optical frequency comb to single-frequency optical references. , 2016, , .		Ο
386	Generating 100+ GHz repetition rate soliton pulse trains with a Kerr microcavity. , 2016, , .		0
387	Coherent Frequency Combs for Spectroscopy Spanning 3 to 5.2 ŵm. , 2016, , .		0
388	Dispersion engineered high-Q resonators on a chip. , 2016, , .		0
389	On-chip waveguides for self-referencing low-power and high-repetition-rate laser frequency combs. , 2017, , .		0
390	30 GHz Frequency Comb Spanning 160 THz in the Near-Infrared. , 2017, , .		0
391	Molecular Fingerprinting with Long-Wave Infrared Frequency Combs. , 2017, , .		Ο
392	Nonlinear Si-waveguides for mid-infrared comb generation and dual comb spectroscopy at 5 ŵm. , 2017, , .		0
393	Dispersion-Engineered Silicon Nitride Supercontinuum for Frequency Comb Metrology at the 10â^'15 Level. , 2017, , .		Ο
394	Mid-infrared frequency comb generation in integrated photonic waveguides. , 2017, , .		0
395	Er:fiber frequency comb for optical synthesis with mHz resolution. , 2017, , .		0
396	Aluminum-nitride-waveguide supercontinuum and harmonic generation across 500 to 4000 nm. , 2017, ,		0

#	Article	IF	CITATIONS
397	Accessing octave-spanning soliton microcomb states in a thermally stable way. , 2017, , .		Ο
398	Self-Seeded Mid-Infrared Generation in Periodically-Poled Lithium Niobate Waveguides. , 2017, , .		0
399	A thermal noise limited, rigidly-held optical reference cavity for ultra-low noise microwave generation. , 2017, , .		0
400	Absolute frequency comb comparisons and the measurement of optical atomic clock transitions. , 2018, , .		0
401	Operating an optical frequency comb using a 5-W handheld USB charger. , 2018, , .		0
402	CMOS-compatible, low-loss deuterated silicon nitride photonic devices for optical frequency combs. , 2018, , .		0
403	Bridging Telecom Wavelengths to Alkali Atomic Transitions with Tunable Kerr Frequency Combs. , 2018, , .		0
404	Mid-infrared integrated photonic elements and efficient couplers on fusion-bonded, suspended silicon membranes. , 2018, , .		0
405	Low Power Generation of Broadband Single Kerr Solitons in Silicon Nitride Resonators. , 2018, , .		0
406	Suspended-Si waveguides for spectral engineering of mid-IR frequency combs. , 2018, , .		0
407	Stable Kerr Solitons for Optical-Frequency Synthesis and Direct Frequency-Comb Atomic Spectroscopy. , 2018, , .		0
408	Direct electric-field sampled infrared spectroscopy from 325 l̂¼m. , 2018, , .		0
409	Mid-Infrared Frequency Comb Generation with In-Line Frequency Stabilization. , 2018, , .		Ο
410	Controllable amplitude-to-phase distortion in high-speed photodiodes under pulsed illumination. , 2018, , .		0
411	Octave-spanning Infrared Frequency Combs: Synthesis and Spectroscopy. , 2018, , .		0
412	Broadband mid-infrared frequency combs in quasi-phase-matched lithium niobate waveguides. , 2018, , .		0
413	Chirped Photonic Crystal Kerr Cavities. , 2018, , .		0
414	Hyperspectral Microscopy with Broadband Infrared Frequency Combs. , 2019, , .		0

Hyperspectral Microscopy with Broadband Infrared Frequency Combs. , 2019, , . 414

#	Article	IF	CITATIONS
415	30 GHz Supercontinuum Generation for Astronomy with Efficient SiN Waveguides. , 2019, , .		Ο
416	Si-chip frequency combs with 2-octaves bandwidth for longwave-IR gas and liquid dual-comb spectroscopy. , 2019, , .		0
417	Measuring Optical Frequency Ratios with Uncertainties Below 10â^'17 via the Boulder Atomic Clock Network. , 2019, , .		0
418	Optically Generated 10-GHz Signal with 10 Microradian Residual Phase Instability. , 2019, , .		0