
Zhanyong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3421953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Antioxidant and Antibacterial Activities of the Pyridineâ€4â€Aldehyde Schiff Bases Grafted Chloracetyl Chitosan Oligosaccharide Derivatives. Starch/Staerke, 2023, 75, .	2.1	5
2	The influence of bioactive glyoxylate bearing Schiff base on antifungal and antioxidant activities to chitosan quaternary ammonium salts. Carbohydrate Polymers, 2022, 278, 118970.	10.2	25
3	Facile synthesis, characterization, antioxidant activity, and antibacterial activity of carboxymethyl inulin salt derivatives. International Journal of Biological Macromolecules, 2022, 199, 138-149.	7.5	13
4	Antimicrobial and Antioxidant Activities of N-2-Hydroxypropyltrimethyl Ammonium Chitosan Derivatives Bearing Amino Acid Schiff Bases. Marine Drugs, 2022, 20, 86.	4.6	11
5	Synthesis and characterization of α-lipoic acid grafted chitosan derivatives with antioxidant activity. Reactive and Functional Polymers, 2022, 172, 105205.	4.1	18
6	Enhanced antifungal and antioxidant activities of new chitosan derivatives modified with Schiff base bearing benzenoid/heterocyclic moieties. International Journal of Biological Macromolecules, 2022, 208, 586-595.	7.5	19
7	Preparation of Doxorubicin-Loaded Carboxymethyl-β-Cyclodextrin/Chitosan Nanoparticles with Antioxidant, Antitumor Activities and pH-Sensitive Release. Marine Drugs, 2022, 20, 278.	4.6	7
8	Synthesis of Hydroxypropyltrimethyl Ammonium Chitosan Derivatives Bearing Thioctate and the Potential for Antioxidant Application. Molecules, 2022, 27, 2682.	3.8	1
9	Novel coumarin-functionalized inulin derivatives: Chemical modification and antioxidant activity assessment. Carbohydrate Research, 2022, 518, 108597.	2.3	10
10	Antifungal activity of double Schiff bases of chitosan derivatives bearing active halogeno-benzenes. International Journal of Biological Macromolecules, 2021, 179, 292-298.	7.5	40
11	Modification of carboxymethyl inulin with heterocyclic compounds: Synthesis, characterization, antioxidant and antifungal activities. International Journal of Biological Macromolecules, 2021, 181, 572-581.	7.5	24
12	Novel 2-Hydroxypropyltrimethyl Ammonium Chitosan Derivatives: Synthesis, Characterization, Moisture Absorption and Retention Properties. Molecules, 2021, 26, 4238.	3.8	7
13	Synthesis, Characterization, and Evaluation of Nanoparticles Loading Adriamycin Based on 2-Hydroxypropyltrimethyl Ammonium Chloride Chitosan Grafting Folic Acid. Polymers, 2021, 13, 2229.	4.5	5
14	Determination of chitosan content with Schiff base method and HPLC. International Journal of Biological Macromolecules, 2021, 182, 1537-1542.	7.5	10
15	Preparation of Cross-linked Chitosan Quaternary Ammonium Salt Hydrogel Films Loading Drug of Gentamicin Sulfate for Antibacterial Wound Dressing. Marine Drugs, 2021, 19, 479.	4.6	25
16	Synthesis and antioxidant activity of the inulin derivative bearing 1,2,3-triazole and diphenyl phosphate. International Journal of Biological Macromolecules, 2021, 186, 47-53.	7.5	14
17	New synthetic adriamycin-incorporated chitosan nanoparticles with enhanced antioxidant, antitumor activities and pH-sensitive drug release. Carbohydrate Polymers, 2021, 273, 118623.	10.2	25
18	Improved Antioxidant and Antifungal Activity of Chitosan Derivatives Bearing Urea Groups. Starch/Staerke, 2020, 72, 1900205.	2.1	5

#	Article	IF	CITATIONS
19	Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications. International Journal of Biological Macromolecules, 2020, 143, 714-723.	7.5	26
20	Preparation and physicochemical properties of antioxidant chitosan ascorbate/methylcellulose composite films. International Journal of Biological Macromolecules, 2020, 146, 53-61.	7.5	47
21	Highly efficient free radical-scavenging property of phenolic-functionalized chitosan derivatives: Chemical modification and activity assessment. International Journal of Biological Macromolecules, 2020, 164, 4279-4288.	7.5	18
22	Phenolic-containing chitosan quaternary ammonium derivatives and their significantly enhanced antioxidant and antitumor properties. Carbohydrate Research, 2020, 498, 108169.	2.3	26
23	Enhanced antifungal activity of novel cationic chitosan derivative bearing triphenylphosphonium salt via azide-alkyne click reaction. International Journal of Biological Macromolecules, 2020, 165, 1765-1772.	7.5	25
24	Determination of chitosan content with ratio coefficient method and HPLC. International Journal of Biological Macromolecules, 2020, 164, 384-388.	7.5	10
25	New synthetic chitosan derivatives bearing benzenoid/heterocyclic moieties with enhanced antioxidant and antifungal activities. Carbohydrate Polymers, 2020, 249, 116847.	10.2	43
26	Modification of Hydroxypropyltrimethyl Ammonium Chitosan with Organic Acid: Synthesis, Characterization, and Antioxidant Activity. Polymers, 2020, 12, 2460.	4.5	9
27	Synthesis and Characterization of N,N,N-trimethyl-O-(ureidopyridinium)acetyl Chitosan Derivatives with Antioxidant and Antifungal Activities. Marine Drugs, 2020, 18, 163.	4.6	13
28	Synthesis, characterization, and the antioxidant activity of the acetylated chitosan derivatives containing sulfonium salts. International Journal of Biological Macromolecules, 2020, 152, 349-358.	7.5	13
29	Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. Carbohydrate Polymers, 2020, 236, 116002.	10.2	106
30	Preparation of 2,6-diurea-chitosan oligosaccharide derivatives for efficient antifungal and antioxidant activities. Carbohydrate Polymers, 2020, 234, 115903.	10.2	35
31	Synthesis and Antioxidant Activity of Cationic 1,2,3-Triazole Functionalized Starch Derivatives. Polymers, 2020, 12, 112.	4.5	9
32	Synthesis and Characterization of Inulin Derivatives Bearing Urea Groups with Promising Antifungal Activity. Starch/Staerke, 2019, 71, 1800058.	2.1	5
33	Synthesis, Characterization, and the Antioxidant Activity of Carboxymethyl Chitosan Derivatives Containing Thiourea Salts. Polymers, 2019, 11, 1810.	4.5	23
34	The antioxidant and antifungal activity of chitosan derivatives bearing Schiff bases and quaternary ammonium salts. Carbohydrate Polymers, 2019, 226, 115256.	10.2	99
35	Preparation of starch derivatives bearing urea groups and the evaluation of antioxidant, antifungal, and antibacterial activities. International Journal of Biological Macromolecules, 2019, 141, 1271-1279.	7.5	8
36	Synthesis, Characterization, and Antioxidant Evaluation of Novel Pyridylurea-Functionalized Chitosan Derivatives. Polymers, 2019, 11, 951.	4.5	11

#	Article	IF	CITATIONS
37	Novel Inulin Derivatives Modified with Schiff Bases: Synthesis, Characterization, and Antifungal Activity. Polymers, 2019, 11, 998.	4.5	7
38	Synthesis of urea-functionalized chitosan derivatives for potential antifungal and antioxidant applications. Carbohydrate Polymers, 2019, 215, 108-118.	10.2	37
39	Synthesis, Characterization, and Antifungal Activity of Schiff Bases of Inulin Bearing Pyridine ring. Polymers, 2019, 11, 371.	4.5	22
40	Physical and Antioxidant Properties of Edible Chitosan Ascorbate Films. Journal of Agricultural and Food Chemistry, 2019, 67, 2530-2539.	5.2	52
41	Significantly enhanced antioxidant activity of chitosan through chemical modification with coumarins. Polymer Chemistry, 2019, 10, 1480-1488.	3.9	40
42	Evaluation of quaternary ammonium chitosan derivatives differing in the length of alkyl side-chain: Synthesis and antifungal activity. International Journal of Biological Macromolecules, 2019, 129, 1127-1132.	7.5	20
43	Enhanced antioxidant and antifungal activity of chitosan derivatives bearing 6-O-imidazole-based quaternary ammonium salts. Carbohydrate Polymers, 2019, 206, 493-503.	10.2	65
44	Synthesis, Characterization, and the Antifungal Property of Aminoethyl Chitosan Quaternary Ammonium Salts. Starch/Staerke, 2018, 70, 1700266.	2.1	2
45	Synthesis of Novel Amino Lactose and Evaluation of Its Antioxidant Property. Starch/Staerke, 2018, 70, 1700293.	2.1	1
46	Synthesis of inulin derivatives with quaternary phosphonium salts and their antifungal activity. International Journal of Biological Macromolecules, 2018, 113, 1273-1278.	7.5	29
47	The evaluation of antioxidant and antifungal properties of 6-amino-6-deoxychitosan in vitro. International Journal of Biological Macromolecules, 2018, 107, 595-603.	7.5	30
48	Synthesis, characterization, and the antifungal activity of chitosan derivatives containing urea groups. International Journal of Biological Macromolecules, 2018, 109, 1061-1067.	7.5	33
49	Novel cationic chitosan derivative bearing 1,2,3-triazolium and pyridinium: Synthesis, characterization, and antifungal property. Carbohydrate Polymers, 2018, 182, 180-187.	10.2	65
50	Radical Scavenging Activities of Novel Cationic Inulin Derivatives. Polymers, 2018, 10, 1295.	4.5	3
51	Synthesis, Characterization, and Antifungal Activity of Pyridine-Based Triple Quaternized Chitosan Derivatives. Molecules, 2018, 23, 2604.	3.8	18
52	Synthesis of Novel Chitin Derivatives Bearing Amino Groups and Evaluation of Their Antifungal Activity. Marine Drugs, 2018, 16, 380.	4.6	7
53	Synthesis, Characterization, and Antifungal Property of Hydroxypropyltrimethyl Ammonium Chitosan Halogenated Acetates. Marine Drugs, 2018, 16, 315.	4.6	29
54	Antioxidant Activity and Antifungal Activity of Chitosan Derivatives with Propane Sulfonate Groups. Polymers, 2018, 10, 395.	4.5	32

#	Article	IF	CITATIONS
55	Synthesis and antioxidant action of chitosan derivatives with amino-containing groups via azide-alkyne click reaction and N-methylation. Carbohydrate Polymers, 2018, 199, 583-592.	10.2	41
56	Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity. Marine Drugs, 2018, 16, 107.	4.6	20
57	Preparation and Characterization of Quaternized Chitosan Derivatives and Assessment of Their Antioxidant Activity. Molecules, 2018, 23, 516.	3.8	59
58	Synthesis of Quaternary Ammonium Salts of Chitosan Bearing Halogenated Acetate for Antifungal and Antibacterial Activities. Polymers, 2018, 10, 530.	4.5	23
59	Synthesis, Characterization, and Antifungal Activity of Nâ€Quaternized and Nâ€Điquaternized Chitin Derivatives. Starch/Staerke, 2018, 70, 1800026.	2.1	3
60	Synthesis, characterization, and evaluation of antifungal and antioxidant properties of cationic chitosan derivative via azide-alkyne click reaction. International Journal of Biological Macromolecules, 2018, 120, 318-324.	7.5	35
61	Synthesis, characterization, and the antioxidant activity of N,N,N-trimethyl chitosan salts. International Journal of Biological Macromolecules, 2018, 118, 9-14.	7.5	49
62	Novel 1,2,3-triazolium-functionalized starch derivatives: Synthesis, characterization, and evaluation of antifungal property. Carbohydrate Polymers, 2017, 160, 163-171.	10.2	34
63	Design, synthesis of novel chitosan derivatives bearing quaternary phosphonium salts and evaluation of antifungal activity. International Journal of Biological Macromolecules, 2017, 102, 704-711.	7.5	51
64	The influence of starch derivatives with benzene or halogenated benzene on antibacterial activity. Starch/Staerke, 2017, 69, 1600350.	2.1	8
65	Synthesis, characterization, and antifungal evaluation of novel 1,2,3-triazolium-functionalized starch derivative. International Journal of Biological Macromolecules, 2017, 101, 845-851.	7.5	24
66	Synthesis, characterization, and antifungal property of starch derivatives modified with quaternary phosphonium salts. Materials Science and Engineering C, 2017, 76, 1048-1056.	7.3	26
67	Synthesis of aminopyridiniumâ€grafted starch derivatives and evaluation of their antioxidant property. Starch/Staerke, 2017, 69, 1600259.	2.1	11
68	Novel 1,2,3-triazolium-functionalized inulin derivatives: synthesis, free radical-scavenging activity, and antifungal activity. RSC Advances, 2017, 7, 42225-42232.	3.6	23
69	Synthesis and antioxidant ability of 6,6′-diamino-6,6′-dideoxytrehalose. Bioorganic Chemistry, 2017, 74, 66-71.	4.1	12
70	Antioxidant activity of inulin derivatives with quaternary ammonium. Starch/Staerke, 2017, 69, 1700046.	2.1	9
71	Design, synthesis of novel starch derivative bearing 1,2,3-triazolium and pyridinium and evaluation of its antifungal activity. Carbohydrate Polymers, 2017, 157, 236-243.	10.2	32
72	Novel Amino-Pyridine Functionalized Chitosan Quaternary Ammonium Derivatives: Design, Synthesis, and Antioxidant Activity. Molecules, 2017, 22, 156.	3.8	43

#	Article	IF	CITATIONS
73	Synthesis, Characterization, and the Antioxidant Activity of Double Quaternized Chitosan Derivatives. Molecules, 2017, 22, 501.	3.8	32
74	Preparation and Characterization of Novel Cationic Chitosan Derivatives Bearing Quaternary Ammonium and Phosphonium Salts and Assessment of Their Antifungal Properties. Molecules, 2017, 22, 1438.	3.8	34
75	Synthesis, characterization, and antifungal property of chitosan ammonium salts with halogens. International Journal of Biological Macromolecules, 2016, 92, 293-298.	7.5	45
76	Synthesis of water soluble chitosan derivatives with halogeno-1,2,3-triazole and their antifungal activity. International Journal of Biological Macromolecules, 2016, 91, 623-629.	7.5	58
77	Synthesis, characterization, and antibacterial property of novel starch derivatives with 1,2,3-triazole. Carbohydrate Polymers, 2016, 142, 1-7.	10.2	50
78	Synthesis and antioxidant property of novel 1,2,3-triazole-linked starch derivatives via †click chemistry'. International Journal of Biological Macromolecules, 2016, 82, 404-410.	7.5	73
79	Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke. Carbohydrate Polymers, 2015, 121, 315-319.	10.2	90
80	Novel triazolyl-functionalized chitosan derivatives with different chain lengths of aliphatic alcohol substituent: Design, synthesis, and antifungal activity. Carbohydrate Research, 2015, 418, 44-49.	2.3	33
81	Synthesis, characterization, and antifungal activity of novel inulin derivatives with chlorinated benzene. Carbohydrate Polymers, 2014, 99, 469-473.	10.2	42
82	Synthesis of amphiphilic aminated inulin via â€~click chemistry' and evaluation for its antibacterial activity. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4590-4593.	2.2	24
83	Synthesis, characterization, and antioxidant properties of novel inulin derivatives with amino-pyridine group. International Journal of Biological Macromolecules, 2014, 70, 44-49.	7.5	82
84	Comparative study of the influence of active groups of chitosan derivatives on antifungal activity. Journal of Applied Polymer Science, 2013, 127, 2553-2556.	2.6	28
85	Synthesis and antifungal activity of thiadiazole-functionalized chitosan derivatives. Carbohydrate Research, 2013, 373, 103-107.	2.3	52
86	Phenolic antioxidants-functionalized quaternized chitosan: Synthesis and antioxidant properties. International Journal of Biological Macromolecules, 2013, 53, 77-81.	7.5	67
87	Synthesis and antifungal properties of 6-amino-6-deoxyinulin, a kind of precursors for facile chemical modifications of inulin. Carbohydrate Polymers, 2012, 87, 1744-1748.	10.2	34
88	Antifungal properties of chitosan salts in laboratory media. Journal of Applied Polymer Science, 2012, 124, 2501-2507.	2.6	14
89	Highly efficient synthesis and antioxidant activity of O-(aminoethyl)inulin. Carbohydrate Polymers, 2011, 83, 1240-1244.	10.2	25
90	Synthesis and hydroxyl radicals scavenging activity of N-(aminoethyl)inulin. Carbohydrate Polymers, 2011, 85, 268-271.	10.2	30

#	Article	IF	CITATIONS
91	The hydroxyl radical scavenging activity of chitosan, hyaluronan, starch and their O-carboxymethylated derivatives. Carbohydrate Polymers, 2010, 82, 1043-1045.	10.2	65
92	Synthesis, characterization, and antifungal activity of novel quaternary chitosan derivatives. Carbohydrate Research, 2010, 345, 1896-1900.	2.3	60
93	The influence of the cation of quaternized chitosans on antioxidant activity. Carbohydrate Polymers, 2009, 78, 439-443.	10.2	61
94	The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohydrate Polymers, 2008, 71, 694-697.	10.2	107
95	Synthesis and hydroxyl radicals scavenging activity of quaternized carboxymethyl chitosan. Carbohydrate Polymers, 2008, 73, 173-177.	10.2	75
96	The influence of the cationic of quaternized chitosan on antifungal activity. International Journal of Food Microbiology, 2007, 118, 214-217.	4.7	70
97	Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydrate Research, 2007, 342, 1329-1332.	2.3	299
98	Synthesis and antifungal properties of sulfanilamide derivatives of chitosan. Carbohydrate Research, 2007, 342, 2390-2395.	2.3	64
99	Novel derivatives of chitosan and their antifungal activities in vitro. Carbohydrate Research, 2006, 341, 351-354.	2.3	153
100	The antioxidant activity of glucosamine hydrochloride in vitro. Bioorganic and Medicinal Chemistry, 2006, 14, 1706-1709.	3.0	98
101	Hydroxyl radicals scavenging activity of N-substituted chitosan and quaternized chitosan. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6348-6350.	2.2	94
102	Relevance of molecular weight of chitosan and its derivatives and their antioxidant activities in vitro. Bioorganic and Medicinal Chemistry, 2005, 13, 1573-1577.	3.0	253
103	The synthesis and antioxidant activity of the Schiff bases of chitosan and carboxymethyl chitosan. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4600-4603.	2.2	251
104	Preparation of high-molecular weight and high-sulfate content chitosans and their potential antioxidant activity in vitro. Carbohydrate Polymers, 2005, 61, 148-154.	10.2	118
105	Synthesis, characterization, and antioxidant activity of carboxymethyl chitosan derivatives containing sulfonium salt. Journal of Oceanology and Limnology, 0, , 1.	1.3	5