List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3421945/publications.pdf Version: 2024-02-01

IAMES M HAVWOOD

#	Article	IF	CITATIONS
1	Monsoonal precipitation over Peninsular Malaysia in the CMIP6 HighResMIP experiments: the role of model resolution. Climate Dynamics, 2022, 58, 2783-2805.	1.7	15
2	The 2019 Raikoke volcanic eruption – Part 2: Particle-phase dispersion and concurrent wildfire smoke emissions. Atmospheric Chemistry and Physics, 2022, 22, 2975-2997.	1.9	15
3	The impact of stratospheric aerosol intervention on the North Atlantic and Quasi-Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment. Atmospheric Chemistry and Physics, 2022, 22, 2999-3016.	1.9	15
4	Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations. Atmospheric Chemistry and Physics, 2022, 22, 4557-4579.	1.9	19
5	Assessing the consequences of including aerosol absorption in potential stratospheric aerosol injection climate intervention strategies. Atmospheric Chemistry and Physics, 2022, 22, 6135-6150.	1.9	3
6	North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: why detailed modelling is needed for understanding regional implications of solar radiation management. Atmospheric Chemistry and Physics, 2021, 21, 1287-1304.	1.9	25
7	Atmospheric aerosols and their role in climate change. , 2021, , 645-659.		5
8	Photoacoustic studies of energy transfer from ozone photoproducts to bath gases following Chappuis band photoexcitation. Physical Chemistry Chemical Physics, 2021, 23, 536-553.	1.3	6
9	The CLoud–Aerosol–Radiation Interaction and Forcing: YearÂ2017 (CLARIFY-2017) measurement campaign. Atmospheric Chemistry and Physics, 2021, 21, 1049-1084.	1.9	57
10	An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin. Atmospheric Chemistry and Physics, 2021, 21, 1507-1563.	1.9	97
11	Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI – PartÂ2: Comparison with MODIS and aircraft measurements from the CLARIFY-2017 field campaign. Atmospheric Chemistry and Physics, 2021, 21, 3235-3254.	1.9	7
12	Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Chemistry and Physics, 2021, 21, 4231-4247.	1.9	22
13	Influence of a weak typhoon on the vertical distribution of air pollution in Hong Kong: A perspective from a Doppler LiDAR network. Environmental Pollution, 2021, 276, 116534.	3.7	22
14	Climatology of Borneo Vortices in the HadGEM3-GC3.1 General Circulation Model. Journal of Climate, 2021, 34, 3401-3419.	1.2	12
15	Hydrological Extremes and Responses to Climate Change in the Kelantan River Basin, Malaysia, Based on the CMIP6 HighResMIP Experiments. Water (Switzerland), 2021, 13, 1472.	1.2	24
16	Assessing Transboundary‣ocal Aerosols Interaction Over Complex Terrain Using a Doppler LiDAR Network. Geophysical Research Letters, 2021, 48, e2021GL093238.	1.5	10
17	The 2019ÂRaikoke volcanic eruption – PartÂ1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide. Atmospheric Chemistry and Physics, 2021, 21, 10851-10879.	1.9	38
18	Climate change modulates the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing from tropical eruptions. Nature Communications, 2021, 12, 4708.	5.8	35

#	Article	IF	CITATIONS
19	A review of alternative climate products for SWAT modelling: Sources, assessment and future directions. Science of the Total Environment, 2021, 795, 148915.	3.9	41
20	Climate models generally underrepresent the warming by Central Africa biomass-burning aerosols over the Southeast Atlantic. Science Advances, 2021, 7, eabg9998.	4.7	25
21	Physical and chemical properties of black carbon and organic matter from different combustion and photochemical sources using aerodynamic aerosol classification. Atmospheric Chemistry and Physics, 2021, 21, 16161-16182.	1.9	9
22	Resolution Dependence of Regional Hydro-Climatic Projection: A Case-Study for the Johor River Basin, Malaysia. Water (Switzerland), 2021, 13, 3158.	1.2	7
23	Bounding Global Aerosol Radiative Forcing of Climate Change. Reviews of Geophysics, 2020, 58, e2019RG000660.	9.0	424
24	Antipyretic Medication for a Feverish Planet. Earth Systems and Environment, 2020, 4, 757-762.	3.0	8
25	Transformation and ageing of biomass burning carbonaceous aerosol over tropical South America from aircraft in situ measurements during SAMBBA. Atmospheric Chemistry and Physics, 2020, 20, 5309-5326.	1.9	26
26	Sensitivity and accuracy of refractive index retrievals from measured extinction and absorption cross sections for mobility-selected internally mixed light absorbing aerosols. Aerosol Science and Technology, 2020, 54, 1034-1057.	1.5	16
27	Absorption closure in highly aged biomass burning smoke. Atmospheric Chemistry and Physics, 2020, 20, 11201-11221.	1.9	29
28	Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017. Atmospheric Chemistry and Physics, 2020, 20, 12697-12719.	1.9	33
29	Evaluating biases in filter-based aerosol absorption measurements using photoacoustic spectroscopy. Atmospheric Measurement Techniques, 2019, 12, 3417-3434.	1.2	34
30	Characteristics of Heavy Particulate Matter Pollution Events Over Hong Kong and Their Relationships With Vertical Wind Profiles Using Highâ€Timeâ€Resolution Doppler Lidar Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9609-9623.	1.2	55
31	Black carbon physical and optical properties across northern India during pre-monsoon and monsoon seasons. Atmospheric Chemistry and Physics, 2019, 19, 13079-13096.	1.9	15
32	Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI – Part 1: Method description and sensitivity. Atmospheric Chemistry and Physics, 2019, 19, 9595-9611.	1.9	26
33	Optimizing the performance of aerosol photoacoustic cells using a finite element model. Part 2: Application to a two-resonator cell. Aerosol Science and Technology, 2019, 53, 1128-1148.	1.5	9
34	Optimizing the performance of aerosol photoacoustic cells using a finite element model. Part 1: Method validation and application to single-resonator multipass cells. Aerosol Science and Technology, 2019, 53, 1107-1127.	1.5	12
35	Are Changes in Atmospheric Circulation Important for Black Carbon Aerosol Impacts on Clouds, Precipitation, and Radiation?. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7930-7950.	1.2	29
36	Saharan dust and biomass burning aerosols during ex-hurricane Ophelia: observations from the new UK lidar and sun-photometer network. Atmospheric Chemistry and Physics, 2019, 19, 3557-3578.	1.9	32

#	Article	IF	CITATIONS
37	Vertical and horizontal distribution of submicron aerosol chemical composition and physical characteristics across northern India during pre-monsoon and monsoon seasons. Atmospheric Chemistry and Physics, 2019, 19, 5615-5634.	1.9	41
38	The vertical distribution of biomass burning pollution over tropical South America from aircraft in situ measurements during SAMBBA. Atmospheric Chemistry and Physics, 2019, 19, 5771-5790.	1.9	19
39	The impact of bath gas composition on the calibration of photoacoustic spectrometers with ozone at discrete visible wavelengths spanning the Chappuis band. Atmospheric Measurement Techniques, 2019, 12, 2371-2385.	1.2	13
40	Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model. Atmospheric Chemistry and Physics, 2019, 19, 1301-1326.	1.9	41
41	Response to marine cloud brightening in a multi-model ensemble. Atmospheric Chemistry and Physics, 2018, 18, 621-634.	1.9	37
42	Can reducing black carbon and methane below RCP2.6 levels keep global warming below 1.5 °C?. Atmospheric Science Letters, 2018, 19, e821.	0.8	12
43	Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering. Earth's Future, 2018, 6, 230-251.	2.4	49
44	The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering. Atmospheric Chemistry and Physics, 2018, 18, 13097-13113.	1.9	19
45	Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nature Communications, 2018, 9, 3734.	5.8	166
46	On the accuracy of aerosol photoacoustic spectrometer calibrations using absorption by ozone. Atmospheric Measurement Techniques, 2018, 11, 2313-2324.	1.2	35
47	The contrasting climate response to tropical and extratropical energy perturbations. Climate Dynamics, 2018, 51, 3231-3249.	1.7	11
48	Dust mass concentrations from the UK volcanic ash lidar network compared with in-situ aircraft measurements. EPJ Web of Conferences, 2018, 176, 05058.	0.1	1
49	Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012. Atmospheric Chemistry and Physics, 2018, 18, 5619-5638.	1.9	19
50	Strong constraints on aerosol–cloud interactions from volcanic eruptions. Nature, 2017, 546, 485-491.	13.7	191
51	Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model. Climate Dynamics, 2017, 48, 2279-2295.	1.7	81
52	Impacts of hemispheric solar geoengineering on tropical cyclone frequency. Nature Communications, 2017, 8, 1382.	5.8	53
53	Biomass Burning Aerosols in the Amazon Basin, Characterised by Lidar, Optical Particle Counters, and Modelling. EPJ Web of Conferences, 2016, 119, 23006.	0.1	0

54 Atmospheric Aerosols andÂTheir Role in Climate Change. , 2016, , 449-463.

5

#	Article	IF	CITATIONS
55	The impact of equilibrating hemispheric albedos on tropical performance in the HadGEM2â€ES coupled climate model. Geophysical Research Letters, 2016, 43, 395-403.	1.5	54
56	Sensitivity of volcanic aerosol dispersion to meteorological conditions: A Pinatubo case study. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6892-6908.	1.2	21
57	Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign. Atmospheric Chemistry and Physics, 2016, 16, 14657-14685.	1.9	41
58	On the vertical distribution of smoke in the Amazonian atmosphere during the dry season. Atmospheric Chemistry and Physics, 2016, 16, 2155-2174.	1.9	28
59	Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection. Atmospheric Chemistry and Physics, 2016, 16, 2843-2862.	1.9	41
60	The Curious Nature of the Hemispheric Symmetry of the Earth's Water and Energy Balances. Current Climate Change Reports, 2016, 2, 135-147.	2.8	41
61	Fires increase Amazon forest productivity through increases in diffuse radiation. Geophysical Research Letters, 2015, 42, 4654-4662.	1.5	87
62	Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study. Atmospheric Chemistry and Physics, 2015, 15, 2791-2804.	1.9	60
63	A method to represent subgridâ€scale updraft velocity in kilometerâ€scale models: Implication for aerosol activation. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4149-4173.	1.2	19
64	The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the <scp>HadGEM2‣S</scp> climate model. Atmospheric Science Letters, 2014, 15, 92-96.	0.8	63
65	Boundary tracking using a suboptimal sliding mode algorithm. , 2014, , .		17
66	Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 8320-8332.	1.2	226
67	An overview of the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,103.	1.2	45
68	The Harmattan over West Africa: nocturnal structure and frontogenesis. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1364-1373.	1.0	13
69	Overview of the South American biomass burning analysis (SAMBBA) field experiment. , 2013, , .		5
70	Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nature Climate Change, 2013, 3, 660-665.	8.1	269
71	Spatial distribution of dust's optical properties over the Sahara and Asia inferred from Moderate Resolution Imaging Spectroradiometer. Atmospheric Chemistry and Physics, 2013, 13, 10827-10845.	1.9	7
72	Stratospheric aerosols from the Sarychev volcano eruption in the 2009 Arctic summer. Atmospheric Chemistry and Physics, 2013, 13, 6533-6552.	1.9	37

#	Article	IF	CITATIONS
73	The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 9743-9752.	1.2	129
74	The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,036.	1.2	202
75	Sea-spray geoengineering in the HadGEM2-ES earth-system model: radiative impact and climate response. Atmospheric Chemistry and Physics, 2012, 12, 10887-10898.	1.9	37
76	Airborne measurements of trace gases and aerosols over the London metropolitan region. Atmospheric Chemistry and Physics, 2012, 12, 5163-5187.	1.9	43
77	A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 1. In situ airborne observations. Journal of Geophysical Research, 2012, 117, .	3.3	52
78	In situ observations of volcanic ash clouds from the FAAM aircraft during the eruption of Eyjafjallajökull in 2010. Journal of Geophysical Research, 2012, 117, .	3.3	135
79	A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 2. Airborne and satellite radiative measurements. Journal of Geophysical Research, 2012, 117, .	3.3	47
80	Operational prediction of ash concentrations in the distal volcanic cloud from the 2010 Eyjafjallajökull eruption. Journal of Geophysical Research, 2012, 117, .	3.3	108
81	A comparison of atmospheric dispersion model predictions with observations of SO ₂ and sulphate aerosol from volcanic eruptions. Journal of Geophysical Research, 2012, 117, .	3.3	26
82	Progress in climate model simulations of geoengineering. Eos, 2012, 93, 340-340.	0.1	5
83	Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 EyjafjallajA¶kull eruption using lidar observations and NAME simulations. Journal of Geophysical Research, 2011, 116, .	3.3	93
84	The roles of aerosol, water vapor and cloud in future global dimming/brightening. Journal of Geophysical Research, 2011, 116, .	3.3	56
85	Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. Journal of Geophysical Research, 2011, 116, .	3.3	369
86	Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash plume. Journal of Geophysical Research, 2011, 116, .	3.3	96
87	Examination of longâ€wave radiative bias in general circulation models over North Africa during May–July. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1179-1192.	1.0	15
88	Shortâ€wave and longâ€wave radiative properties of Saharan dust aerosol. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1149-1167.	1.0	52
89	Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1106-1116.	1.0	58
90	Multiâ€sensor satellite remote sensing of dust aerosols over North Africa during GERBILS. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1168-1178.	1.0	23

#	Article	IF	CITATIONS
91	Geostationary Earth Radiation Budget Intercomparison of Longwave and Shortwave radiation (GERBILS). Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1105-1105.	1.0	2
92	A comparison of the climate impacts of geoengineering by stratospheric SO ₂ injection and by brightening of marine stratocumulus cloud. Atmospheric Science Letters, 2011, 12, 176-183.	0.8	55
93	The Atlantic inflow to the Saharan heat low: observations and modelling. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 125-140.	1.0	59
94	The AMMA field campaigns: multiscale and multidisciplinary observations in the West African region. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 8-33.	1.0	136
95	Parameterization of contrails in the UK Met Office Climate Model. Journal of Geophysical Research, 2010, 115, .	3.3	59
96	Evidence of internal mixing of African dust and biomass burning particles by individual particle analysis using electron beam techniques. Journal of Geophysical Research, 2010, 115, .	3.3	50
97	Estimating the climate impact of linear contrails using the UK Met Office climate model. Geophysical Research Letters, 2010, 37, .	1.5	32
98	Observations of the eruption of the Sarychev volcano and simulations using the HadGEM2 climate model. Journal of Geophysical Research, 2010, 115, .	3.3	128
99	Measurements of aerosol properties from aircraft, satellite and groundâ€based remote sensing: a caseâ€study from the Dust and Biomassâ€burning Experiment (DABEX). Quarterly Journal of the Royal Meteorological Society, 2009, 135, 922-934.	1.0	46
100	Climate impacts of geoengineering marine stratocumulus clouds. Journal of Geophysical Research, 2009, 114, .	3.3	130
101	A case study of the radiative forcing of persistent contrails evolving into contrailâ€induced cirrus. Journal of Geophysical Research, 2009, 114, .	3.3	65
102	Vertical and spatial distribution of dust from aircraft and satellite measurements during the GERBILS field campaign. Geophysical Research Letters, 2009, 36, .	1.5	25
103	Global Indirect Radiative Forcing Caused by Aerosols. , 2009, , 451-468.		18
104	Prediction of visibility and aerosol within the operational Met Office Unified Model. II: Validation of model performance using observational data. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1817-1832.	1.0	34
105	Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. Journal of Geophysical Research, 2008, 113, .	3.3	140
106	Aircraft measurements of biomass burning aerosol over West Africa during DABEX. Journal of Geophysical Research, 2008, 113, .	3.3	108
107	Aerosol optical depths over North Africa: 2. Modeling and model validation. Journal of Geophysical Research, 2008, 113, .	3.3	31
108	Physical and optical properties of mineral dust aerosol during the Dust and Biomassâ€burning Experiment. Journal of Geophysical Research, 2008, 113, .	3.3	164

#	Article	IF	CITATIONS
109	Uplift of Saharan dust south of the intertropical discontinuity. Journal of Geophysical Research, 2008, 113, .	3.3	113
110	Modeling of the solar radiative impact of biomass burning aerosols during the Dust and Biomassâ€burning Experiment (DABEX). Journal of Geophysical Research, 2008, 113, .	3.3	34
111	Overview of the Dust and Biomassâ€burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Periodâ€0. Journal of Geophysical Research, 2008, 113, .	3.3	188
112	Sensitivity of global sulphate aerosol production to changes in oxidant concentrations and climate. Journal of Geophysical Research, 2007, 112, .	3.3	19
113	Causes of the reduction in uncertainty in the anthropogenic radiative forcing of climate between IPCC (2001) and IPCC (2007). Geophysical Research Letters, 2007, 34, .	1.5	43
114	Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model. Journal of Geophysical Research, 2007, 112, .	3.3	102
115	Aerosol Direct Radiative Impact Experiment (ADRIEX) overview. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 3-15.	1.0	32
116	In situ and remote-sensing measurements of the mean microphysical and optical properties of industrial pollution aerosol during ADRIEX. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 17-32.	1.0	31
117	A comparison of aerosol optical and chemical properties over the Adriatic and Black Seas during summer 2004: Two case-studies from ADRIEX. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 33-45.	1.0	13
118	Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000. Atmospheric Chemistry and Physics, 2005, 5, 1697-1719.	1.9	82
119	The direct radiative effect of biomass burning aerosols over southern Africa. Atmospheric Chemistry and Physics, 2005, 5, 1999-2018.	1.9	62
120	Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 2005, 438, 1138-1141.	13.7	436
121	An "A-Train―Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols. Bulletin of the American Meteorological Society, 2005, 86, 1795-1810.	1.7	138
122	Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003?. Journal of Geophysical Research, 2005, 110, .	3.3	185
123	Radiative effect of surface albedo change from biomass burning. Geophysical Research Letters, 2005, 32, .	1.5	39
124	The effect of overlying absorbing aerosol layers on remote sensing retrievals of cloud effective radius and cloud optical depth. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 779-800.	1.0	133
125	Short-wave radiative effects of biomass burning aerosol during SAFARI2000. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 1423-1447.	1.0	16
126	The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	212

#	Article	IF	CITATIONS
127	Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and Sun photometers during SAFARI 2000. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	107
128	Modeling the solar radiative impact of aerosols from biomass burning during the Southern African Regional Science Initiative (SAFARI-2000) experiment. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	73
129	Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: A case study based on measured aerosol and cloud properties. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	174
130	Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum. Journal of Geophysical Research, 2003, 108, .	3.3	136
131	Modeling the radiative impact of mineral dust during the Saharan Dust Experiment (SHADE) campaign. Journal of Geophysical Research, 2003, 108, .	3.3	124
132	Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum. Journal of Geophysical Research, 2003, 108, .	3.3	320
133	Profiling of a Saharan dust outbreak based on a synergy between active and passive remote sensing. Journal of Geophysical Research, 2003, 108, .	3.3	45
134	Remote sensing of vertical distributions of smoke aerosol off the coast of Africa. Geophysical Research Letters, 2003, 30, .	1.5	36
135	Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa. Geophysical Research Letters, 2003, 30, .	1.5	150
136	Comparison of Saharan dust aerosol optical depths retrieved using aircraft mounted Pyranometers and 2-channel AVHRR algorithms. Geophysical Research Letters, 2001, 28, 2393-2396.	1.5	29
137	Optical properties and direct radiative effect of Saharan dust: A case study of two Saharan dust outbreaks using aircraft data. Journal of Geophysical Research, 2001, 106, 18417-18430.	3.3	110
138	Tropospheric Aerosol Climate Forcing in Clear-Sky Satellite Observations over the Oceans. Science, 1999, 283, 1299-1303.	6.0	297
139	Aviation fuel tracer simulation: Model intercomparison and implications. Geophysical Research Letters, 1998, 25, 3947-3950.	1.5	48
140	Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. Journal of Geophysical Research, 1998, 103, 6043-6058.	3.3	402
141	Reply [to "Comments on â€~A limited-area-model case study of the effects of sub-grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol'â€]. Geophysical Research Letters, 1998, 25, 1041-1041.	1.5	3
142	Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols. Journal of Geophysical Research, 1998, 103, 16979-16998.	3.3	124
143	Estimates of radiative forcing due to modeled increases in tropospheric ozone. Journal of Geophysical Research, 1998, 103, 16999-17007.	3.3	41
144	General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol. Journal of Climate, 1997, 10, 1562-1577.	1.2	222

#	Article	IF	CITATIONS
145	Transient response of a coupled model to estimated changes in greenhouse gas and sulfate concentrations. Geophysical Research Letters, 1997, 24, 1335-1338.	1.5	116
146	A limited-area-model case study of the effects of sub-grid scale Variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol. Geophysical Research Letters, 1997, 24, 143-146.	1.5	92
147	Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model. Quarterly Journal of the Royal Meteorological Society, 1997, 123, 1907-1930.	1.0	225
148	Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model. Quarterly Journal of the Royal Meteorological Society, 1997, 123, 1907-1930.	1.0	5
149	The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophysical Research Letters, 1995, 22, 603-606.	1.5	575