
Carballo Jose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/342165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of nitrate and nitrite on Listeria and selected spoilage bacteria inoculated in dry-cured ham. Food Research International, 2017, 101, 82-87.	2.9	21
2	Technological implications of reducing nitrate and nitrite levels in dry-fermented sausages: Typical microbiota, residual nitrate and nitrite and volatile profile. Food Control, 2015, 57, 275-281.	2.8	47
3	Konjac-based oil bulking system for development of improved-lipid pork patties: Technological, microbiological and sensory assessment. Meat Science, 2015, 101, 95-102.	2.7	25
4	Effects of model Maillard compounds on bone characteristics and functionality. Journal of the Science of Food and Agriculture, 2013, 93, 2816-2821.	1.7	7
5	Composition and functionality of bone affected by dietary glycated compounds. Food and Function, 2013, 4, 549.	2.1	6
6	Raw-appearing Restructured fish models made with Sodium alginate or Microbial transglutaminase and effect of chilled storage. Food Science and Technology, 2013, 33, 137-145.	0.8	8
7	Application of Response Surface Methodology to study the effect of different calcium sources in fish muscle-alginate restructured products. Food Science and Technology, 2011, 31, 209-216.	0.8	7
8	Use of microbial transglutaminase and sodium alginate in the preparation of restructured fish models using cold gelation: Effect of frozen storage. Innovative Food Science and Emerging Technologies, 2010, 11, 394-400.	2.7	27
9	Study of two different cold restructuring processes using two different qualities of hake (<i>Merluccius capensis</i>) muscle, with addition of microbial transglutaminase. Journal of the Science of Food and Agriculture, 2009, 89, 1346-1351.	1.7	11
10	Influence of alginate and microbial transglutaminase as binding ingredients on restructured fish muscle processed at low temperature. Journal of the Science of Food and Agriculture, 2008, 88, 1529-1536.	1.7	48
11	Physicochemical and sensory properties of healthier frankfurters as affected by walnut and fat content. Food Chemistry, 2008, 107, 1547-1552.	4.2	53
12	Characteristics of meat batters with added native and preheated defatted walnut. Food Chemistry, 2008, 107, 1506-1514.	4.2	53
13	Biogenic amines in pressurized vacuum-packaged cooked sliced ham under different chilled storage conditions. Meat Science, 2007, 75, 397-405.	2.7	36
14	Effect of total replacement of pork backfat with walnut on the nutritional profile of frankfurters. Meat Science, 2007, 77, 173-181.	2.7	71
15	Consequences of high-pressure processing of vacuum-packaged frankfurters on the formation of polyamines: Effect of chilled storage. Food Chemistry, 2007, 104, 202-208.	4.2	23
16	Biogenic Amine Formation and Nitrite Reactions in Meat Batter As Affected by High-Pressure Processing and Chilled Storage. Journal of Agricultural and Food Chemistry, 2006, 54, 9959-9965.	2.4	13
17	Microbial transglutaminase and caseinate as cold set binders: Influence of meat species and chilling storage. LWT - Food Science and Technology, 2006, 39, 692-699.	2.5	42
18	Walnut, microbial transglutaminase and chilling storage time effects on salt-free beef batter characteristics. European Food Research and Technology, 2006, 222, 458-466.	1.6	18

CARBALLO JOSE

#	Article	IF	CITATIONS
19	High pressure processing of meat batters with added walnuts. International Journal of Food Science and Technology, 2005, 40, 47-54.	1.3	21
20	Physicochemical properties of low sodium frankfurter with added walnut: effect of transglutaminase combined with caseinate, KCl and dietary fibre as salt replacers. Meat Science, 2005, 69, 781-788.	2.7	150
21	Restructured beef with different proportions of walnut as affected by meat particle size. European Food Research and Technology, 2004, 218, 230-236.	1.6	47
22	Role of cathepsin D activity in gelation of chicken meat heated under pressure. Food Chemistry, 2003, 80, 241-247.	4.2	12
23	Physicochemical and sensory characteristics of restructured beef steak with added walnuts. Meat Science, 2003, 65, 1391-1397.	2.7	78
24	Salt and phosphate effects on the gelling process of pressure/heat treated pork batters. Meat Science, 2002, 61, 15-23.	2.7	72
25	Responses of Pseudomonas fluorescens to combined high pressure/temperature treatments. European Food Research and Technology, 2002, 214, 511-515.	1.6	10
26	Microbial Inactivation in Meat Products by Pressure/Temperature Processing. Journal of Food Science, 2002, 67, 797-801.	1.5	24
27	Healthier meat and meat products: their role as functional foods. Meat Science, 2001, 59, 5-13.	2.7	466
28	Pressure-assisted gelation of chemically modified poultry meat batters. Food Chemistry, 2001, 75, 203-209.	4.2	13
29	Characteristics of pressurised pork meat batters as affected by addition of plasma proteins, apple fibre and potato starch. Journal of the Science of Food and Agriculture, 2000, 80, 1230-1236.	1.7	20
30	Plasma Protein and Soy Fiber Content Effect on Bologna Sausage Properties as Influenced by Fat Level. Journal of Food Science, 2000, 65, 281-287.	1.5	205
31	DSC study on the influence of meat source, salt and fat levels, and processing parameters on batters pressurisation. European Food Research and Technology, 2000, 211, 387-392.	1.6	18
32	High pressure/thermal treatment of meat batters prepared from freeze–thawed pork. Meat Science, 2000, 54, 357-364.	2.7	34
33	Emulsifying and Gelation Properties during Freezing and Frozen Storage of Hake, Pork, and Chicken Actomyosins As Affected by Addition of Formaldehyde. Journal of Agricultural and Food Chemistry, 1998, 46, 813-819.	2.4	15
34	Heating of Chicken and Pork Meat Batters under Pressure Conditions:Â Protein Interactions. Journal of Agricultural and Food Chemistry, 1998, 46, 4706-4711.	2.4	45
35	Pressure/Heat Combinations on Pork Meat Batters:Â Protein Thermal Behavior and Product Rheological Properties. Journal of Agricultural and Food Chemistry, 1997, 45, 4440-4445.	2.4	75
36	Heating rate effects on high-fat and low-fat frankfurters with a high content of added water. Meat Science, 1997, 47, 105-114.	2.7	39

CARBALLO JOSE

#	Article	IF	CITATIONS
37	Thermal gelation of chicken, pork and hake (Merluccius merluccius, L) actomyosin. Meat Science, 1997, 47, 157-166.	2.7	16
38	High-pressure-induced changes in the characteristics of low-fat and high-fat sausages. Journal of the Science of Food and Agriculture, 1997, 75, 61-66.	1.7	37
39	Texture of Uncooked and Cooked Low- and High-Fat Meat Batters As Affected by High Hydrostatic Pressure. Journal of Agricultural and Food Chemistry, 1996, 44, 1624-1625.	2.4	24
40	Frozen storage of Bologna sausages as a function of fat content and of levels of added starch and egg white. Meat Science, 1996, 42, 325-332.	2.7	49
41	Research Note: Emulsifying Properties of Actomyosin from Several Species. LWT - Food Science and Technology, 1996, 29, 379-383.	2.5	20
42	Chopping temperature effects on the characteristics and chilled storage of low- and high-fat pork Bologna sausages. Meat Science, 1996, 44, 1-9.	2.7	16
43	Rheological changes during thermal processing of low-fat meat emulsions formulated with different texture-modifying ingredients. European Food Research and Technology, 1996, 203, 252-254.	0.6	6
44	Freezing and frozen storage of actomyosin from different species. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 203, 316-319.	0.7	11
45	Thermal gelation of meat batters as a function of type and level of fat and protein content. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 202, 211-214.	0.7	13
46	Characteristics of High- and Low-Fat Bologna Sausages as Affected by Final Internal Cooking Temperature and Chilling Storage. Journal of the Science of Food and Agriculture, 1996, 72, 40-48.	1.7	32
47	Morphology and Texture of Bologna Sausage as Related to Content of Fat, Starch and Egg White. Journal of Food Science, 1996, 61, 652-665.	1.5	94
48	Starch and Egg White Influence on Properties of Bologna Sausage as Related to Fat Content. Journal of Food Science, 1995, 60, 673-677.	1.5	117
49	Binding properties and colour of Bologna sausage made with varying fat levels, protein levels and cooking temperatures. Meat Science, 1995, 41, 301-313.	2.7	70
50	Influence of Protein and Fat Content and Cooking Temperature on Texture and Sensory Evaluation of Bologna Sausage. LWT - Food Science and Technology, 1995, 28, 481-487.	2.5	54
51	The effect of use of freezeâ€ŧhawed pork on the properties of Bologna sausages with two fat levels. International Journal of Food Science and Technology, 1995, 30, 335-345.	1.3	40
52	Influence of Thermal Treatment on Gelation of Actomyosin from Different Myosystems. Journal of Food Science, 1994, 59, 211-215.	1.5	19
53	Incorporation of sardine surimi in Bologna sausage containing different fat levels. Meat Science, 1994, 38, 27-37.	2.7	90
54	Effects of levels of fat, surimi from sardine (Sardina pilchardus) and heat processing on thermal gelation of meat batters. Journal of the Science of Food and Agriculture, 1993, 62, 267-272.	1.7	4

CARBALLO JOSE

#	Article	IF	CITATIONS
55	Protein Concentration, pH and Ionic Strength Affect Apparent Viscosity of Actomyosin. Journal of Food Science, 1993, 58, 1269-1272.	1.5	20
56	Effects of different levels of fat on rheological changes and microstructure of meat batters during heat processing. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 197, 109-113.	0.7	8
57	Rheological changes during thermal gelation of meat batters containing surimi from alaska pollack (Theragra chalcogramma) or sardine (Sardina pilchardus). Journal of the Science of Food and Agriculture, 1992, 59, 117-122.	1.7	11
58	Effect of light on colour and reaction of nitrite in sliced pork bologna under different chilled storage temperatures. Meat Science, 1991, 30, 235-244.	2.7	29
59	Influence of electrical stimulation on lamb quality during forzen storage. International Journal of Refrigeration, 1989, 12, 164-168.	1.8	0
60	Influence of low voltage electrical stimulation and rate of chilling on post-mortem glucolysis in lamb. Food Chemistry, 1988, 29, 257-267.	4.2	8
61	DIFFERENT PROPORTIONS AND TYPES OF MECHANICALLY RECOVERED PORK IN HAMBURGERS. Journal of Food Quality, 1985, 8, 27-37.	1.4	3