
Guirong Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3421127/publications.pdf Version: 2024-02-01

CHIRONC SUN

#	Article	IF	CITATIONS
1	The Chicken Pan-Genome Reveals Gene Content Variation and a Promoter Region Deletion in <i>IGF2BP1</i> Affecting Body Size. Molecular Biology and Evolution, 2021, 38, 5066-5081.	8.9	70
2	Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens. Scientific Reports, 2017, 7, 45564.	3.3	61
3	LncRNA IMFNCR Promotes Intramuscular Adipocyte Differentiation by Sponging miR-128-3p and miR-27b-3p. Frontiers in Genetics, 2019, 10, 42.	2.3	50
4	Integrated Analysis of MiRNA and Genes Associated with Meat Quality Reveals that Gga-MiR-140-5p Affects Intramuscular Fat Deposition in Chickens. Cellular Physiology and Biochemistry, 2018, 46, 2421-2433.	1.6	46
5	Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro. BMC Genomics, 2019, 20, 743.	2.8	42
6	miRNA-223 targets the GPAM gene and regulates the differentiation of intramuscular adipocytes. Gene, 2019, 685, 106-113.	2.2	42
7	Characterization of miRNA transcriptome profiles related to breast muscle development and intramuscular fat deposition in chickens. Journal of Cellular Biochemistry, 2018, 119, 7063-7079.	2.6	41
8	Analyses of MicroRNA and mRNA Expression Profiles Reveal the Crucial Interaction Networks and Pathways for Regulation of Chicken Breast Muscle Development. Frontiers in Genetics, 2019, 10, 197.	2.3	39
9	Novel SNPs in the PRDM16 gene and their associations with performance traits in chickens. Molecular Biology Reports, 2012, 39, 3153-3160.	2.3	38
10	Systematic analysis of the regulatory functions of microRNAs in chicken hepatic lipid metabolism. Scientific Reports, 2016, 6, 31766.	3.3	36
11	Breeding history and candidate genes responsible for black skin of Xichuan black-bone chicken. BMC Genomics, 2020, 21, 511.	2.8	32
12	Analysis of four complete linkage sequence variants within a novel lncRNA located in a growth QTL on chromosome 1 related to growth traits in chickens. Journal of Animal Science, 2020, 98, .	0.5	31
13	Genome-wide association study reveals the genetic determinism of growth traits in a Gushi-Anka F2 chicken population. Heredity, 2021, 126, 293-307.	2.6	31
14	gga-miRNA-18b-3p Inhibits Intramuscular Adipocytes Differentiation in Chicken by Targeting the ACOT13 Gene. Cells, 2019, 8, 556.	4.1	30
15	Effect of γâ€aminobutyric acid on growth performance and immune function in chicks under beak trimming stress. Animal Science Journal, 2013, 84, 121-129.	1.4	27
16	Estrogen Promotes Hepatic Synthesis of Long-Chain Polyunsaturated Fatty Acids by Regulating ELOVL5 at Post-Transcriptional Level in Laying Hens. International Journal of Molecular Sciences, 2017, 18, 1405.	4.1	27
17	Characteristics of the fecal microbiota of high- and low-yield hens and effects of fecal microbiota transplantation on egg production performance. Research in Veterinary Science, 2020, 129, 164-173.	1.9	27
18	Transcriptome profile in bursa of Fabricius reveals potential mode for stress-influenced immune function in chicken stress model. BMC Genomics, 2018, 19, 918.	2.8	25

#	Article	IF	CITATIONS
19	MicroRNA-15a Regulates the Differentiation of Intramuscular Preadipocytes by Targeting ACAA1, ACOX1 and SCP2 in Chickens. International Journal of Molecular Sciences, 2019, 20, 4063.	4.1	25
20	MiRNAs and mRNAs Analysis during Abdominal Preadipocyte Differentiation in Chickens. Animals, 2020, 10, 468.	2.3	25
21	Sequencing and characterization of IncRNAs in the breast muscle of Gushi and Arbor Acres chickens. Genome, 2018, 61, 337-347.	2.0	24
22	Identification of genes related to effects of stress on immune function in the spleen in a chicken stress model using transcriptome analysis. Molecular Immunology, 2020, 124, 180-189.	2.2	24
23	Modulation of growth and immunity by dietary supplementation with resveratrol in young chickens receiving conventional vaccinations. American Journal of Veterinary Research, 2014, 75, 752-759.	0.6	23
24	MicroRNAs and their regulatory networks in Chinese Gushi chicken abdominal adipose tissue during postnatal late development. BMC Genomics, 2019, 20, 778.	2.8	23
25	Transcriptome Analysis of the Breast Muscle of Xichuan Black-Bone Chickens Under Tyrosine Supplementation Revealed the Mechanism of Tyrosine-Induced Melanin Deposition. Frontiers in Genetics, 2019, 10, 457.	2.3	19
26	Identification of a novel 43-bp insertion in the heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene and its associations with growth and carcass traits in chickens. Animal Biotechnology, 2019, 30, 252-259.	1.5	18
27	Integrative analysis of long noncoding RNA and mRNA reveals candidate IncRNAs responsible for meat quality at different physiological stages in Gushi chicken. PLoS ONE, 2019, 14, e0215006.	2.5	18
28	The Landscape of DNA Methylation Associated With the Transcriptomic Network of Intramuscular Adipocytes Generates Insight Into Intramuscular Fat Deposition in Chicken. Frontiers in Cell and Developmental Biology, 2020, 8, 206.	3.7	18
29	Polymorphisms of the pro-opiomelanocortin and agouti-related protein genes and their association with chicken production traits. Molecular Biology Reports, 2012, 39, 7533-7539.	2.3	17
30	Comparative transcriptome analysis of hypothalamus-regulated feed intake induced by exogenous visfatin in chicks. BMC Genomics, 2018, 19, 249.	2.8	17
31	Effect of polymorphism within miRNA-1606 gene on growth and carcass traits in chicken. Gene, 2015, 566, 8-12.	2.2	16
32	Combined transcriptomics and proteomics forecast analysis for potential genes regulating the Columbian plumage color in chickens. PLoS ONE, 2019, 14, e0210850.	2.5	16
33	Association Between the Methylation Statuses at CpG Sites in the Promoter Region of the SLCO1B3, RNA Expression and Color Change in Blue Eggshells in Lushi Chickens. Frontiers in Genetics, 2019, 10, 161.	2.3	16
34	Transcriptom analysis revealed regulation of dexamethasone induced microRNAs in chicken thymus. Journal of Cellular Biochemistry, 2019, 120, 6570-6579.	2.6	15
35	Estrogen Abolishes the Repression Role of gga-miR-221-5p Targeting ELOVL6 and SQLE to Promote Lipid Synthesis in Chicken Liver. International Journal of Molecular Sciences, 2020, 21, 1624.	4.1	15
36	Comprehensive Transcriptome Analysis of IncRNAs Reveals the Role of IncAD in Chicken Intramuscular and Abdominal Adipogenesis. Journal of Agricultural and Food Chemistry, 2020, 68, 3678-3688.	5.2	15

#	Article	IF	CITATIONS
37	MicroRNAs-1614-3p gene seed region polymorphisms and association analysis with chicken production traits. Journal of Applied Genetics, 2013, 54, 209-213.	1.9	14
38	LncRNAs and their regulatory networks in breast muscle tissue of Chinese Gushi chickens during late postnatal development. BMC Genomics, 2021, 22, 44.	2.8	14
39	Molecular characterization and a duplicated 31-bp indel within the LDB2 gene and its associations with production performance in chickens. Gene, 2020, 761, 145046.	2.2	13
40	Transcriptomic Analysis of Spleen Revealed Mechanism of Dexamethasone-Induced Immune Suppression in Chicks. Genes, 2020, 11, 513.	2.4	12
41	Analysis of miRNA and mRNA reveals core interaction networks and pathways of dexamethasone-induced immunosuppression in chicken bursa of Fabricius. Molecular Immunology, 2021, 134, 34-47.	2.2	12
42	Molecular cloning and SNP association analysis of chicken PMCH gene. Molecular Biology Reports, 2013, 40, 5049-5055.	2.3	11
43	Weighted gene coexpression network analysis identifies specific transcriptional modules and hub genes related to intramuscular fat traits in chicken breast muscle. Journal of Cellular Biochemistry, 2019, 120, 13625-13639.	2.6	11
44	Identification of genes related to dexamethasone-induced immunosuppression in chicken thymus using transcriptome analysis. Research in Veterinary Science, 2020, 132, 318-327.	1.9	11
45	Characteristics and expression profiles of circRNAs during abdominal adipose tissue development in Chinese Gushi chickens. PLoS ONE, 2021, 16, e0249288.	2.5	11
46	SNP in pre-miR-1666 decreases mature miRNA expression and is associated with chicken performance. Genome, 2015, 58, 81-90.	2.0	10
47	Transcriptome Analysis of the Effects of Fasting Caecotrophy on Hepatic Lipid Metabolism in New Zealand Rabbits. Animals, 2019, 9, 648.	2.3	10
48	Influence of cecotrophy on fat metabolism mediated by caecal microorganisms in New Zealand white rabbits. Journal of Animal Physiology and Animal Nutrition, 2020, 104, 749-757.	2.2	10
49	Characterization of Copy Number Variation's Potential Role in Marek's Disease. International Journal of Molecular Sciences, 2017, 18, 1020.	4.1	9
50	Detection of CNV in the SH3RF2 gene and its effects on growth and carcass traits in chickens. BMC Genetics, 2020, 21, 22.	2.7	9
51	Polymorphisms of the bone morphogenetic protein 7 gene (BMP7) and association analysis with sow productive traits. Animal Reproduction Science, 2013, 142, 56-62.	1.5	8
52	Distinct tissue expression profiles of chicken Lpin1- $\hat{I} \pm / \hat{I}^2$ isoforms and the effect of the variation on muscle fiber traits. Gene, 2013, 515, 281-290.	2.2	8
53	Study on the role of gga-miRNA-200a in regulating cell differentiation and proliferation of chicken breast muscle by targeting Grb2. Animal Cells and Systems, 2017, 21, 365-373.	2.2	8
54	High-throughput transcriptome analysis reveals potentially important relationships between lncRNAs and genes in broilers affected by Valgus-varus Deformity (Gallus gallus). Gene, 2020, 743, 144511.	2.2	8

#	Article	IF	CITATIONS
55	Characterization and expression of bone morphogenetic protein 4 gene in postnatal pigs. Molecular Biology Reports, 2010, 37, 2369-2377.	2.3	7
56	MicroRNA Sequencing Reveals the Effect of Different Levels of Non-Fibrous Carbohydrate/Neutral Detergent Fiber on Rumen Development in Calves. Animals, 2019, 9, 496.	2.3	7
57	Effect of pre-miRNA-1658 gene polymorphism on chicken growth and carcass traits. Asian-Australasian Journal of Animal Sciences, 2017, 30, 455-461.	2.4	7
58	MiR-29b-1-5p regulates the proliferation and differentiation of chicken primary myoblasts and analysis of its effective targets. Poultry Science, 2022, 101, 101557.	3.4	7
59	Cloning and expression analysis of zygote arrest 1 (Zar1) in New Zealand white rabbits. Journal of Genetics, 2017, 96, 3-8.	0.7	6
60	TMT-based quantitative proteomic analysis reveals the spleen regulatory network of dexamethasone-induced immune suppression in chicks. Journal of Proteomics, 2021, 248, 104353.	2.4	6
61	Molecular Cloning, Characterization, and Expression Analysis of Chicken Δ-6 Desaturase. Asian-Australasian Journal of Animal Sciences, 2010, 23, 116-121.	2.4	6
62	Cloning of TPO gene and associations of polymorphisms with chicken growth and carcass traits. Molecular Biology Reports, 2013, 40, 3437-3443.	2.3	5
63	Identification of genes related to stress affecting thymus immune function in a chicken stress model using transcriptome analysis. Research in Veterinary Science, 2021, 138, 90-99.	1.9	5
64	Effects of miR-125b-5p on Preadipocyte Proliferation and Differentiation in Chicken. Molecular Biology Reports, 2021, 48, 491-502.	2.3	5
65	Weighted gene co-expression network indicates that the DYNLL2 is an important regulator of chicken breast muscle development and is regulated by miR-148a-3p. BMC Genomics, 2022, 23, 258.	2.8	5
66	Polymorphisms of the interleukin-15 gene and their associations with fatness and muscle fiber traits in chickens. Journal of Applied Genetics, 2012, 53, 443-448.	1.9	4
67	Molecular characterization and expression of the GDF9 gene in New Zealand white rabbits. Journal of Genetics, 2017, 96, 313-318.	0.7	4
68	Identification and expression analysis of MicroRNAs in chicken spleen in a corticosterone-induced stress model. Research in Veterinary Science, 2021, 136, 287-296.	1.9	4
69	Use of transcriptomic analysis to identify microRNAs related to the effect of stress on thymus immune function in a chicken stress model. Research in Veterinary Science, 2021, 140, 233-241.	1.9	4
70	Effect of Beak Trimming Stress on the Apoptosis and Its Related Protein Expression of Chicken Spleen. Journal of Integrative Agriculture, 2012, 11, 639-645.	3.5	2
71	Association study of a common genetic variant in pre-miR-1596 with chicken performance traits. Molecular Biology Reports, 2014, 41, 7175-7181.	2.3	2
72	Screening and stability analysis of reference genes in fasting caecotrophy model in rabbits. Molecular Biology Reports, 2022, 49, 1057-1065.	2.3	2

#	Article	IF	CITATIONS
73	Transcriptome analysis of differentially expressed genes in rabbits' ovaries by digital gene-expression profiling. Genes and Genomics, 2018, 40, 687-700.	1.4	1
74	Metabolome and Transcriptome Analysis of Liver and Oocytes of Schizothorax o'connori Raised in Captivity. Frontiers in Genetics, 2021, 12, 677066.	2.3	1
75	POLYMORPHISM OF EXON 2 IN BONE MORPHOGENETIC PROTEIN 7 GENE AND CORRELATION ANALYSIS WITH SOW REPRODUCTIVE TRAITS. , 2016, , .		0
76	Target gene identification and functional characterization of miR-1704 in chicken. Animal Biotechnology, 2020, 31, 229-236.	1.5	0
77	Screening Genes Related to Breast Blister (Keel Cyst) in Chicken by Delta Differential Display. Asian Journal of Animal and Veterinary Advances, 2012, 7, 989-997.	0.0	0
78	The Identification of a Novel Transcript Variant of Chicken <i>Lmbr1</i> and the Sequence Variation Analysis. Journal of Poultry Science, 2013, 50, 104-113.	1.6	0