Hanbin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3421074/publications.pdf

Version: 2024-02-01

206112
48
g-index
2508
2598
citing authors

#	Article	IF	CITATIONS
1	Mussel-inspired self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase and their applications in flexible sensors. Journal of Colloid and Interface Science, 2022, 607, 431-439.	9.4	38
2	From Glutinousâ€Riceâ€Inspired Adhesive Organohydrogels to Flexible Electronic Devices Toward Wearable Sensing, Power Supply, and Energy Storage. Advanced Functional Materials, 2022, 32, .	14.9	101
3	Thermoresponsive, magnetic, adhesive and conductive nanocomposite hydrogels for wireless and non-contact flexible sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128113.	4.7	12
4	Paper-based flexible strain and pressure sensor with enhanced mechanical strength and super-hydrophobicity that can work under water. Journal of Materials Chemistry C, 2022, 10, 3908-3918.	5.5	22
5	Green flexible electronics based on starch. Npj Flexible Electronics, 2022, 6, .	10.7	34
6	Highâ€Density Oxygen Doping ofÂConductive Metal Sulfides forÂBetterÂPolysulfide Trapping and Li ₂ Sâ€6 ₈ ÂRedox Kinetics in High Areal Capacity Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2200840.	11.2	36
7	A cyclic freezing-thawing approach to layered Janus hydrogel tapes with single-sided adhesiveness for wearable strain sensors. Chemical Engineering Journal, 2022, 446, 137163.	12.7	16
8	Electrospun Elastic Films Containing AgNW-Bridged MXene Networks as Capacitive Electronic Skins. ACS Applied Materials & Distribution (2018) and State (2018) a	8.0	20
9	Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers. Chemical Engineering Journal, 2021, 403, 126307.	12.7	110
10	Intrinsically adhesive, highly sensitive and temperature tolerant flexible sensors based on double network organohydrogels. Chemical Engineering Journal, 2021, 413, 127544.	12.7	72
11	Highly compliant and low strain hysteresis sensory electronic skins based on solution processable hybrid hydrogels. Journal of Materials Chemistry C, 2021, 9, 1822-1828.	5.5	19
12	Self-Recoverable, Stretchable, and Sensitive Wearable Sensors Based on Ternary Semi-interpenetrating Ionic Hydrogels. ACS Applied Polymer Materials, 2021, 3, 2732-2741.	4.4	27
13	Fabrication of Raspberry-like Cytochrome C Surface-Imprinted Nanoparticles Based on MOF Composites for High-Performance Protein Separation. ACS Applied Materials & Diterfaces, 2021, 13, 31010-31020.	8.0	30
14	Surface functionalization of cellulose fibers via aza-Michael addition for CO2-assisted water remediation. Applied Surface Science, 2021, 554, 149593.	6.1	6
15	Capacitive Pressure Sensors Containing Reliefs on Solution-Processable Hydrogel Electrodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1441-1451.	8.0	47
16	Paper-Based Wearable Sensors for Humidity and VOC Detection. ACS Sustainable Chemistry and Engineering, 2021, 9, 16937-16945.	6.7	13
17	Hollow Polyaniline Microsphere Functionalized Paper with Multimodal Sensitivity to Strain, Humidity, and Pressure. ACS Applied Electronic Materials, 2020, 2, 247-253.	4.3	6
18	Highâ€Performance Flexible Sensors of Selfâ€Healing, Reversibly Adhesive, and Stretchable Hydrogels for Monitoring Large and Subtle Strains. Macromolecular Materials and Engineering, 2020, 305, 1900621.	3.6	19

#	Article	IF	CITATIONS
19	Flexible and Degradable Multimodal Sensor Fabricated by Transferring Laser-Induced Porous Carbon on Starch Film. ACS Sustainable Chemistry and Engineering, 2020, 8, 527-533.	6.7	45
20	A dual-channel chemosensor based on 8-hydroxyquinoline for fluorescent detection of Hg2+ and colorimetric recognition of Cu2+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 243, 118784.	3.9	14
21	A CO2-switchable surface on aluminium. Applied Surface Science, 2020, 525, 146630.	6.1	5
22	Gas responsive cellulose fibers for capturing and releasing of dyes and proteins from water by packing a smart separation column. Cellulose, 2020, 27, 7127-7138.	4.9	7
23	Local Concentration Effect-Derived Heterogeneous Li ₂ S ₂ /Li ₂ S Deposition on Dual-Phase MWCNT/Cellulose Nanofiber/NiCo ₂ S ₄ Self-Standing Paper for High Performance of Lithium Polysulfide Batteries. ACS Applied Materials & Amp; Interfaces, 2020. 12. 15228-15238.	8.0	27
24	Self-repairing flexible strain sensors based on nanocomposite hydrogels for whole-body monitoring. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592, 124587.	4.7	35
25	Zwitterionic polymer chain-assisted lysozyme imprinted core-shell carbon microspheres with enhanced recognition and selectivity. Talanta, 2020, 217, 121085.	5.5	26
26	Supramolecularly Mediated Robust, Antiâ€Fatigue, and Strainâ€Sensitive Macromolecular Microsphere Composite Hydrogels. Macromolecular Materials and Engineering, 2020, 305, 2000080.	3.6	19
27	Highly Stretchable, Fatigue-Resistant, Electrically Conductive, and Temperature-Tolerant Ionogels for High-Performance Flexible Sensors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26412-26420.	8.0	103
28	A Flexible Multimodal Sensor That Detects Strain, Humidity, Temperature, and Pressure with Carbon Black and Reduced Graphene Oxide Hierarchical Composite on Paper. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40613-40619.	8.0	146
29	Stimuli-responsive cellulose paper materials. Carbohydrate Polymers, 2019, 210, 350-363.	10.2	55
30	Pluronic F127 gels fabricated by thiol–ene click chemistry: preparation, gelation dynamics, swelling behaviors and mechanical properties. Polymer Bulletin, 2019, 76, 6049-6061.	3.3	8
31	Poly(NIPAAm-co-Ru(bpy) 3 2+) hydrogels crosslinked by double-bond end-capped Pluronic F127: preparation, properties and coupling with the BZ reaction. Journal of Materials Science, 2018, 53, 5467-5476.	3.7	3
32	Dually Synergetic Network Hydrogels with Integrated Mechanical Stretchability, Thermal Responsiveness, and Electrical Conductivity for Strain Sensors and Temperature Alertors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 14045-14054.	8.0	156
33	Renewable biomass derived hierarchically porous carbonaceous sponges and their magnetic nanocomposites for removal of organic molecules from water. Journal of Industrial and Engineering Chemistry, 2018, 58, 334-342.	5.8	25
34	Recyclable, stretchable and conductive double network hydrogels towards flexible strain sensors. Journal of Materials Chemistry C, 2018, 6, 13316-13324.	5.5	87
35	Flexible, Degradable, and Cost-Effective Strain Sensor Fabricated by a Scalable Papermaking Procedure. ACS Sustainable Chemistry and Engineering, 2018, 6, 15749-15755.	6.7	48
36	Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors. Journal of Materials Chemistry C, 2018, 6, 9200-9207.	5.5	154

#	Article	IF	CITATIONS
37	Block Copolymer Nanoparticles Remove Biofilms of Drug-Resistant Gram-Positive Bacteria by Nanoscale Bacterial Debridement. Nano Letters, 2018, 18, 4180-4187.	9.1	113
38	A CO ₂ -switchable amidine monomer: synthesis and characterization. Designed Monomers and Polymers, 2017, 20, 363-367.	1.6	6
39	Flexible and Degradable Paper-Based Strain Sensor with Low Cost. ACS Sustainable Chemistry and Engineering, 2017, 5, 10538-10543.	6.7	131
40	CO ₂ -Responsive polymer materials. Polymer Chemistry, 2017, 8, 12-23.	3.9	160
41	Synthesis and self-assembly of ABC linear triblock copolymers to target CO ₂ -responsive multicompartment micelles. RSC Advances, 2016, 6, 86728-86735.	3.6	8
42	Solvent-Driven Formation of Worm-Like Micelles Assembled from a CO ₂ -Responsive Triblock Copolymer. Langmuir, 2015, 31, 8756-8763.	3.5	24
43	CO ₂ -induced reversible morphology transition from giant worms to polymersomes assembled from a block-random segmented copolymer. Polymer Chemistry, 2015, 6, 2900-2908.	3.9	30
44	CO ₂ -Induced Reversible Dispersion of Graphene by a Melamine Derivative. Langmuir, 2015, 31, 12260-12267.	3.5	17
45	CO ₂ -driven vesicle to micelle regulation of amphiphilic copolymer: random versus block strategy. Polymer Chemistry, 2014, 5, 4756-4763.	3.9	51
46	CO ₂ -switchable multi-compartment micelles with segregated corona. Soft Matter, 2014, 10, 6387-6391.	2.7	40
47	Insights into the Relationship between CO ₂ Switchability and Basicity: Examples of Melamine and Its Derivatives. Langmuir, 2014, 30, 9911-9919.	3.5	19
48	Smart Nanotubes: Light-Switchable Single-Walled Carbon Nanotubes Based on Host-Guest Chemistry (Adv. Funct. Mater. 40/2013). Advanced Functional Materials, 2013, 23, 5009-5009.	14.9	0
49	CO ₂ â€Responsive "Smart―Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2013, 25, 584-590.	21.0	106
50	Lightâ€Switchable Singleâ€Walled Carbon Nanotubes Based on Host–Guest Chemistry. Advanced Functional Materials, 2013, 23, 5010-5018.	14.9	37
51	Preparation and property of 2â€acrylamideâ€2â€methylpropanesulfonic acid/acrylamide/sodium styrene sulfonate as fluid loss agent for oil well cement. Polymer Engineering and Science, 2012, 52, 431-437.	3.1	31
52	Preparation and application of core–shell Fe3O4/polythiophene nanoparticles. Journal of Nanoparticle Research, 2011, 13, 6919-6930.	1.9	13
53	Terpolymerization and performance of 2â€acrylamideâ€2â€methyl propane sulfonic acid / itaconic acid / <i>N</i> â€vinylâ€2â€pyrrolidone. Journal of Applied Polymer Science, 2010, 117, 2951-2957.	2.6	4
54	MAA-modified and luminescence properties of ZnO quantum dots. Science in China Series B: Chemistry, 2009, 52, 2125-2133.	0.8	14