
Thomas Hellmut Schindler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3421062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coronary Microvascular Dysfunction. JACC: Cardiovascular Imaging, 2020, 13, 140-155.	2.3	930
2	Anatomic Versus Physiologic Assessment of Coronary Artery Disease. Journal of the American College of Cardiology, 2013, 62, 1639-1653.	1.2	495
3	Cardiac PET Imaging for the Detection and Monitoring of Coronary Artery Disease and Microvascular Health. JACC: Cardiovascular Imaging, 2010, 3, 623-640.	2.3	338
4	Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nature Reviews Cardiology, 2018, 15, 151-166.	6.1	286
5	Coronary Circulatory Dysfunction in Insulin Resistance, Impaired Glucose Tolerance, and Type 2 Diabetes Mellitus. Circulation, 2005, 111, 2291-2298.	1.6	255
6	Relationship Between Increasing Body Weight, Insulin Resistance, Inflammation, Adipocytokine Leptin, and Coronary Circulatory Function. Journal of the American College of Cardiology, 2006, 47, 1188-1195.	1.2	215
7	Joint SNMMI–ASNC Expert Consensus Document on the Role of ¹⁸ F-FDG PET/CT in Cardiac Sarcoid Detection and Therapy Monitoring. Journal of Nuclear Medicine, 2017, 58, 1341-1353.	2.8	187
8	Clinical Quantification of Myocardial Blood Flow Using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. Journal of Nuclear Medicine, 2018, 59, 273-293.	2.8	163
9	Clinical Quantification of Myocardial Blood Flow Using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. Journal of Nuclear Cardiology, 2018, 25, 269-297.	1.4	151
10	Positron Emission Tomography-Measured Abnormal Responses of Myocardial Blood Flow to Sympathetic Stimulation Are Associated With the Risk of Developing Cardiovascular Events. Journal of the American College of Cardiology, 2005, 45, 1505-1512.	1.2	145
11	Joint SNMMI–ASNC expert consensus document on the role of 18F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. Journal of Nuclear Cardiology, 2017, 24, 1741-1758.	1.4	132
12	Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. European Heart Journal, 2011, 32, 1369-1378.	1.0	123
13	Improvement in coronary circulatory function in morbidly obese individuals after gastric bypass-induced weight loss: relation to alterations in endocannabinoids and adipocytokines. European Heart Journal, 2013, 34, 2063-2073.	1.0	90
14	Pathophysiology of ST-segment elevation myocardial infarction: novel mechanisms and treatments. European Heart Journal, 2016, 37, 1268-1283.	1.0	88
15	Coronary Vasomotor Control in Obesity and Morbid Obesity. JACC: Cardiovascular Imaging, 2012, 5, 805-815.	2.3	69
16	Role of PET in the evaluation and understanding of coronary physiology. Journal of Nuclear Cardiology, 2007, 14, 589-603.	1.4	65
17	Assessment of intra- and interobserver reproducibility of rest and cold pressor test-stimulated myocardial blood flow with 13N-ammonia and PET. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 1178-1188.	3.3	56
18	New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease. BioMed Research International, 2014, 2014, 1-24.	0.9	52

#	Article	IF	CITATIONS
19	Quantitative Assessment of Myocardial Blood Flow—Clinical and Research Applications. Seminars in Nuclear Medicine, 2014, 44, 274-293.	2.5	52
20	Improvement in coronary endothelial function is independently associated with a slowed progression of coronary artery calcification in type 2 diabetes mellitus. European Heart Journal, 2009, 30, 3064-3073.	1.0	51
21	Structural alterations of the coronary arterial wall are associated with myocardial flow heterogeneity in type 2 diabetes mellitus. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 219-229.	3.3	44
22	Effect of Evolocumab on Atherogenic Lipoproteins During the Peri- and Early Postinfarction Period. Circulation, 2020, 142, 419-421.	1.6	42
23	Myocardial blood flow: Putting it into clinical perspective. Journal of Nuclear Cardiology, 2016, 23, 1056-1071.	1.4	41
24	Myocardial Blood Flow and InflammatoryÂCardiac Sarcoidosis. JACC: Cardiovascular Imaging, 2017, 10, 157-167.	2.3	41
25	Effect of hormone replacement therapy on vasomotor function of the coronary microcirculation in post-menopausal women with medically treated cardiovascular risk factors. European Heart Journal, 2008, 30, 978-986.	1.0	39
26	Current practice for measurement of radionuclide therapy doses in the UK. Nuclear Medicine Communications, 2004, 25, 419.	0.5	37
27	PET-Determined Hyperemic Myocardial Blood Flow. Journal of the American College of Cardiology, 2014, 64, 1476-1478.	1.2	37
28	Diagnostic Value of PET-Measured Longitudinal Flow Gradient for the Identification of Coronary Artery Disease. JACC: Cardiovascular Imaging, 2014, 7, 387-396.	2.3	36
29	Appropriate Use Criteria for PET Myocardial Perfusion Imaging. Journal of Nuclear Medicine, 2020, 61, 1221-1265.	2.8	36
30	PET-measured heterogeneity in longitudinal myocardial blood flow in response to sympathetic and pharmacologic stress as a non-invasive probe of epicardial vasomotor dysfunction. European Journal of Nuclear Medicine and Molecular Imaging, 2006, 33, 1140-1149.	3.3	35
31	Stress Myocardial Blood Flow Heterogeneity Is a Positron Emission Tomography Biomarker of Ventricular Arrhythmias in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2018, 121, 1081-1089.	0.7	31
32	Positron-Emitting Myocardial Blood Flow Tracers and Clinical Potential. Progress in Cardiovascular Diseases, 2015, 57, 588-606.	1.6	26
33	Diagnostic value of PET-measured heterogeneity in myocardial blood flows during cold pressor testing for the identification of coronary vasomotor dysfunction. Journal of Nuclear Cardiology, 2007, 14, 688-697.	1.4	24
34	Feasibility Evaluation of Myocardial Cannabinoid Type 1 Receptor ImagingÂinÂObesity. JACC: Cardiovascular Imaging, 2018, 11, 320-332.	2.3	24
35	The Role of Nuclear Medicine for COVID-19: Time to Act Now. Journal of Nuclear Medicine, 2020, 61, 781-782.	2.8	22
36	Anti-Apolipoprotein A-1 IgG Levels Predict Coronary Artery Calcification in Obese but Otherwise Healthy Individuals. Mediators of Inflammation, 2012, 2012, 1-10.	1.4	18

#	Article	IF	CITATIONS
37	Effect of Diffuse Subendocardial Hypoperfusion on Left Ventricular Cavity Size by 13N-Ammonia Perfusion PET in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2016, 118, 1908-1915.	0.7	18
38	PET-measured longitudinal flow gradient correlates with invasive fractional flow reserve in CAD patients. European Heart Journal Cardiovascular Imaging, 2016, 18, jew116.	0.5	18
39	Cardiovascular PET/MR imaging: Quo Vadis?. Journal of Nuclear Cardiology, 2017, 24, 1007-1018.	1.4	18
40	Cardiac Positron Emission Tomography/Computed Tomography Imaging of the Renin-Angiotensin System in Humans Holds Promise for Image-Guided Approach to Heart Failure Therapy. Journal of the American College of Cardiology, 2012, 60, 2535-2538.	1.2	16
41	Relationship between HDL Cholesterol Efflux Capacity, Calcium Coronary Artery Content, and Antibodies against ApolipoproteinA-1 in Obese and Healthy Subjects. Journal of Clinical Medicine, 2019, 8, 1225.	1.0	13
42	Role of PET/CT for the Identification of Cardiac Sarcoid Disease. Annals of Nuclear Cardiology, 2015, 1, 79-86.	0.0	12
43	Impact of incomplete revascularization of coronary artery disease on long-term cardiac outcomes. Retrospective comparison of angiographic and myocardial perfusion imaging criteria for completeness. Journal of Nuclear Cardiology, 2016, 23, 546-555.	1.4	11
44	Plasma palmitoylethanolamide (PEA) as a potential biomarker for impaired coronary function. International Journal of Cardiology, 2017, 231, 1-5.	0.8	11
45	The Trajectory of Lipoprotein(a) During the Peri- and Early Postinfarction Period and the Impact of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition. American Journal of Cardiology, 2022, 171, 1-6.	0.7	11
46	Coronary circulatory function with increasing obesity: A complex Uâ€ŧurn. European Journal of Clinical Investigation, 2022, 52, e13755.	1.7	10
47	Alcohol Binge-Induced Cardiovascular Dysfunction Involves Endocannabinoid–CB1-R Signaling. JACC Basic To Translational Science, 2019, 4, 625-637.	1.9	9
48	68Ga-DOTATOC PET for Treatment Efficacy Evaluation of Cardiac Sarcoidosis. Clinical Nuclear Medicine, 2020, 45, e416-e418.	0.7	9
49	Towards Quantitative Myocardial Perfusion PET in the Clinic. Journal of the American College of Radiology, 2014, 11, 429-432.	0.9	8
50	Nuclear Cardiology Core Syllabus of the European Association of Cardiovascular Imaging (EACVI). European Heart Journal Cardiovascular Imaging, 2015, 16, 349-350.	0.5	8
51	Comparison of two software systems for quantification of myocardial blood flow in patients with hypertrophic cardiomyopathy. Journal of Nuclear Cardiology, 2019, 26, 1243-1253.	1.4	8
52	Higher incidence of vasodilator-induced left ventricular cavity dilation by PET when compared to treadmill exercise-ECHO in hypertrophic cardiomyopathy. Journal of Nuclear Cardiology, 2020, 27, 2031-2043.	1.4	8
53	PET Radiopharmaceuticals for Imaging Chemotherapy-Induced Cardiotoxicity. Current Cardiology Reports, 2020, 22, 62.	1.3	8
54	Epicardial fat and atrial fibrillation: the perils of atrial failure. Europace, 2022, 24, 1201-1212.	0.7	8

#	Article	IF	CITATIONS
55	Advantages of 18F-FDG PET/CT Imaging over Modified Duke Criteria and Clinical Presumption in Patients with Challenging Suspicion of Infective Endocarditis. Diagnostics, 2021, 11, 720.	1.3	7
56	Cardiac PET/Computed Tomography Applications and Cardiovascular Outcome. PET Clinics, 2015, 10, 441-459.	1.5	6
57	Positron Emission Tomography-Determined Hyperemic Flow, Myocardial Flow Reserve, and Flow Gradient—Quo Vadis?. Frontiers in Cardiovascular Medicine, 2017, 4, 46.	1.1	6
58	Assessment of coronary artery plaque with non-contrast and T1-weighted magnetic resonance: promise for clinical use?. European Heart Journal, 2019, 40, e20-e22.	1.0	6
59	Clinical Application of Myocardial Blood Flow Quantification in CAD Patients. Annals of Nuclear Cardiology, 2016, 2, 84-93.	0.0	5
60	Emergence of Integrated Cardiac MagneticÂResonance/Positron Emission Tomography Imaging as the Preferred Imaging Modality in Cardiac Sarcoidosis. JACC: Cardiovascular Imaging, 2018, 11, 108-110.	2.3	5
61	PET/CT Imaging of Cardiac Angiotensin II Type 1 Receptors in Nonobstructive Hypertrophic Cardiomyopathy. JACC: Cardiovascular Imaging, 2019, 12, 1895-1896.	2.3	5
62	Novel Myocardial PET/CT Receptor Imaging and Potential Therapeutic Targets. Current Cardiology Reports, 2019, 21, 55.	1.3	5
63	Identify. Quantify. Predict. Why Immunologists Should Widely Use Molecular Imaging for Coronavirus Disease 2019. Frontiers in Immunology, 2021, 12, 568959.	2.2	5
64	Matching between regional coronary vasodilator capacity and corresponding circumferential strain in individuals with normal and increasing body weight. Journal of Nuclear Cardiology, 2012, 19, 693-703.	1.4	4
65	Epicardial adipose tissue: A new cardiovascular risk marker?. International Journal of Cardiology, 2019, 278, 263-264.	0.8	4
66	Cardiac computed tomography-derived extracellular volume fraction in the identification of cardiotoxicity: Another emerging imaging option. IJC Heart and Vasculature, 2021, 34, 100806.	0.6	4
67	Another Step Toward Integrated MR/PET as Favored Imaging Modality in Cardiac Sarcoidosis. JACC: Cardiovascular Imaging, 2022, 15, 457-459.	2.3	4
68	Deep Learning Supplants Visual Analysis by Experienced Operators for the Diagnosis of Cardiac Amyloidosis by Cine-CMR. Diagnostics, 2022, 12, 69.	1.3	4
69	Isolated cardiac sarcoidosis - A rare disease entity?. International Journal of Cardiology, 2018, 253, 194-195.	0.8	3
70	Another potential step to improve prosthetic heart valve endocarditis imaging with 18F-FDG PET/CT. Journal of Nuclear Cardiology, 2018, 25, 1968-1970.	1.4	3
71	PET/CMR. JACC: Cardiovascular Imaging, 2020, 13, 1270-1275.	2.3	3
72	Potential Cardiac Amyloid PET/CT Imaging Targets for Differentiating Immunoglobulin Light Chain From Transthyretin Amyloidosis. Current Cardiology Reports, 2021, 23, 76.	1.3	3

THOMAS HELLMUT SCHINDLER

#	Article	IF	CITATIONS
73	CZT camera: moving beyond classical CAD detection?. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 991-993.	3.3	2
74	Cardiovascular PET/MR: "Not the end but the beginning― Journal of Nuclear Cardiology, 2017, 24, 1098-1100.	1.4	2
75	Coronary Microvascular Dysfunction. Journal of the American College of Cardiology, 2018, 72, 718-720.	1.2	2
76	Cardiac PET/CT-Determined AmyloidÂLight Chain Depositions. Journal of the American College of Cardiology, 2020, 75, 391-394.	1.2	2
77	A Genetic Polymorphism in the Pannexin1 Gene Predisposes for The Development of Endothelial Dysfunction with Increasing BMI. Biomolecules, 2020, 10, 208.	1.8	2
78	18F-Florbetaben and PET/CT Holds Promise for the Identification and Differentiation Among Cardiac Amyloidosis Entities. JACC: Cardiovascular Imaging, 2021, 14, 256-258.	2.3	2
79	Quantification of myocardial oxygen extraction fraction: A proofâ€ofâ€concept study. Magnetic Resonance in Medicine, 2021, 85, 3318-3325.	1.9	2
80	¹⁸ F-FDG PET in Myocardial Viability Assessment: A Practical and Time-Efficient Protocol. Journal of Nuclear Medicine, 2022, 63, 602-608.	2.8	2
81	Potential Role of Cardiovascular Imaging in Improving Cardiovascular Outcome in Coronary Artery Disease. Current Pharmaceutical Design, 2016, 22, 5718-5729.	0.9	2
82	Identification and characterization of cardiac sarcoidosis with positron emission tomography. European Journal of Clinical Investigation, 2022, 52, e13722.	1.7	2
83	Psoriasis-Related Visceral Adiposity andÂArterial Inflammation. JACC: Cardiovascular Imaging, 2018, 11, 358-360.	2.3	1
84	PCSK-9: Entering a new era of cardiovascular risk prediction. International Journal of Cardiology, 2018, 263, 152-153.	0.8	1
85	Cardiac metastasis from medullary thyroid carcinoma: insights from multimodal molecular imaging and magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2020, 21, 231-232.	0.5	1
86	Relative disagreement among different software packages in PET-flow quantitation: An appeal for consistency. Journal of Nuclear Cardiology, 2020, 27, 1234-1236.	1.4	1
87	Emergence of endocardium/epicardium flow gradient as novel risk biomarker in patients with hypertrophic cardiomyopathy. IJC Heart and Vasculature, 2020, 26, 100467.	0.6	1
88	Cardiac sarcoidosis and prediction of sudden death: An ongoing clinical dilemma?. International Journal of Cardiology, 2021, 329, 177-178.	0.8	1
89	Classification of Cardiomyopathies from MR Cine Images Using Convolutional Neural Network with Transfer Learning. Diagnostics, 2021, 11, 1554.	1.3	1
90	Entering a new era of the identification and characterization of myocardial ischemic burden with 150-water PET?. International Journal of Cardiology, 2021, 341, 22-23.	0.8	1

#	Article	IF	CITATIONS
91	Cutting-Edge Imaging of Cardiac Metastases from Neuroendocrine Tumors: Lesson from a Case Series. Diagnostics, 2022, 12, 1182.	1.3	1
92	Adapting the contrast material protocol to the body surface area for an optimized low-dose CT coronary angiography with prospective ECG-triggering: a new evolving concept?. International Journal of Cardiovascular Imaging, 2010, 26, 599-600.	0.7	0
93	Role of myocardial perfusion scintigraphy in octogenarians: Time for reappraisal?. Journal of Nuclear Cardiology, 2018, 25, 1350-1352.	1.4	0
94	PET Myocardial Perfusion Imaging. , 0, , 129-174.		0
95	123I-MIBC cardiac sympathetic imaging provides further insight into cardiorenal interactions in systolic heart failure patients. Journal of Nuclear Cardiology, 2021, 28, 2123-2125.	1.4	Ο
96	Revival of an old stressor: Dobutamine-stimulation for PET myocardial perfusion imaging in patients with end-stage liver disease?. Journal of Nuclear Cardiology, 2020, 27, 2060-2062.	1.4	0
97	Emergence of 18F-FDG positron emission tomography in the detection and characterization of cardiac implantable device infections. Journal of Nuclear Cardiology, 2021, 28, 3004-3006.	1.4	ο
98	Molecular imaging of active coronary micro-calcification with 18F-NaF and PET: emergence of a new biomarker of the vulnerable atherosclerotic plaque?. European Journal of Preventive Cardiology, 2020, , 2047487320912627.	0.8	0
99	Adding clinical value with coronary flow assessment in hypertrophic obstructive cardiomyopathy. IJC Heart and Vasculature, 2020, 27, 100512.	0.6	0
100	Added value gated PET with phase analysis for the detection of scar burden and prognostication in cardiac sarcoidosis?. Journal of Nuclear Cardiology, 2022, 29, 1402-1404.	1.4	0
101	Cardiac Magnetic Resonance Determined T1 Reactivity Holds Promise for a New Avenue of Coronary Circulatory Function Characterization. Circulation: Cardiovascular Imaging, 2021, 14, e012429.	1.3	Ο
102	From Myocardial Blood Flow to Receptor Imaging with PET. Annals of Nuclear Cardiology, 2019, 5, 131-140.	0.0	0
103	Clinical Application of Myocardial Blood Flow Quantification in CAD Patients. Annals of Nuclear Cardiology, 2016, 2, 84-93.	0.0	Ο