Yasunari Monguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3420848/publications.pdf

Version: 2024-02-01

81900 144013 3,995 100 39 57 citations h-index g-index papers 112 112 112 3734 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heterogeneous Pd/C-Catalyzed Ligand-Free, Room-Temperature Suzuki–Miyaura Coupling Reactions in Aqueous Media. Chemistry - A European Journal, 2007, 13, 5937-5943.	3.3	231
2	Efficient and Practical Arene Hydrogenation by Heterogeneous Catalysts under Mild Conditions. Chemistry - A European Journal, 2009, 15, 6953-6963.	3.3	129
3	Ligand-free Pd/C-catalyzed Suzuki–Miyaura coupling reaction for the synthesis of heterobiaryl derivatives. Chemical Communications, 2007, , 5069.	4.1	118
4	Pd/C–Et3N-mediated catalytic hydrodechlorination of aromatic chlorides under mild conditions. Tetrahedron, 2006, 62, 7926-7933.	1.9	95
5	Ligandâ€Free and Heterogeneous Palladium on Carbonâ€Catalyzed Heteroâ€Suzuki–Miyaura Crossâ€Coupling. Advanced Synthesis and Catalysis, 2010, 352, 718-730.	4.3	93
6	Efficient H-D Exchange Reactions Using Heterogeneous Platinum-Group Metal on Carbon-H2-D2O System. Synlett, 2012, 23, 959-972.	1.8	90
7	Chemoselective hydrogenation method catalyzed by Pd/C using diphenylsulfide as a reasonable catalyst poison. Tetrahedron, 2006, 62, 11925-11932.	1.9	88
8	Novel Palladiumâ€onâ€Carbon/Diphenyl Sulfide Complex for Chemoselective Hydrogenation: Preparation, Characterization, and Application. Advanced Synthesis and Catalysis, 2008, 350, 406-410.	4.3	88
9	Ligandâ€Free Sonogashira Coupling Reactions with Heterogeneous Pd/C as the Catalyst. Chemistry - A European Journal, 2008, 14, 6994-6999.	3.3	84
10	Partial Hydrogenation of Alkynes to <i>cis</i> êOlefins by Using a Novel Pd ⁰ â€"Polyethyleneimine Catalyst. Chemistry - A European Journal, 2008, 14, 5109-5111.	3.3	84
11	General method of obtaining deuterium-labeled heterocyclic compounds using neutral D2O with heterogeneous Pd/C. Tetrahedron, 2006, 62, 10954-10961.	1.9	83
12	Development of a Palladium on Boron Nitride Catalyst and its Application to the Semihydrogenation of Alkynes. Advanced Synthesis and Catalysis, 2012, 354, 1264-1268.	4.3	83
13	Heterogeneous Pd/C-catalyzed ligand-free Suzuki–Miyaura coupling reaction using aryl boronic esters. Tetrahedron, 2007, 63, 10596-10602.	1.9	79
14	Rhodium-on-carbon catalyzed hydrogen scavenger- and oxidant-free dehydrogenation of alcohols in aqueous media. Green Chemistry, 2014, 16, 3439.	9.0	77
15	Mild and Efficient H/D Exchange of Alkanes Based on CH Activation Catalyzed by Rhodium on Charcoal. Angewandte Chemie - International Edition, 2008, 47, 5394-5397.	13.8	71
16	Palladium on Carbonâ€Catalyzed Synthesis of Benzil Derivatives from 1,2â€Diarylalkynes with DMSO and Molecular Oxygen as Dual Oxidants. Advanced Synthesis and Catalysis, 2010, 352, 1630-1634.	4.3	70
17	Efficient H/D Exchange Reactions of Alkyl-Substituted Benzene Derivatives by Means of the Pd/C–H2–D2O System. Chemistry - A European Journal, 2007, 13, 4052-4063.	3.3	69
18	Palladium on Carbonâ€Catalyzed Aqueous Transformation of Primary Alcohols to Carboxylic Acids Based on Dehydrogenation under Mildly Reduced Pressure. Advanced Synthesis and Catalysis, 2015, 357, 1205-1210.	4.3	65

#	Article	IF	Citations
19	Siteâ€Selective Deuteratedâ€Alkene Synthesis with Palladium on Boron Nitride. Chemistry - A European Journal, 2013, 19, 484-488.	3.3	60
20	Carbonâ€"Carbon Bond Formation by Ligandâ€free Crossâ€Coupling Reaction Using Palladium Catalyst Supported on Synthetic Adsorbent. ChemCatChem, 2012, 4, 546-558.	3.7	57
21	A Convenient and Effective Method for the Regioselective Deuteration of Alcohols. Advanced Synthesis and Catalysis, 2008, 350, 2215-2218.	4.3	56
22	Evaluation of Aromatic Amination Catalyzed by Palladium on Carbon: A Practical Synthesis of Triarylamines. Advanced Synthesis and Catalysis, 2008, 350, 2767-2777.	4.3	54
23	Pd/C-catalyzed practical degradation of PCBs at room temperature. Applied Catalysis B: Environmental, 2008, 81, 274-282.	20.2	53
24	Platinum on Carbonâ€Catalyzed H–D Exchange Reaction of Aromatic Nuclei due to Isopropyl Alcoholâ€Mediated Self―Activation of Platinum Metal in Deuterium Oxide. Advanced Synthesis and Catalysis, 2013, 355, 1529-1534.	4.3	52
25	Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines. Organic and Biomolecular Chemistry, 2012, 10, 293-304.	2.8	51
26	One-pot aromatic amination based on carbon–nitrogen coupling reaction between aryl halides and azido compounds. Tetrahedron, 2012, 68, 1712-1722.	1.9	51
27	Pyridine <i>N</i> â€Oxide Mediated Oxidation of Diarylalkynes with Palladium on Carbon. European Journal of Organic Chemistry, 2011, 2011, 3361-3367.	2.4	50
28	Stainlessâ€Steel Ballâ€Milling Method for Hydroâ€IDeuteroâ€genation using H ₂ O/D ₂ O as a Hydrogen/Deuterium Source. ChemSusChem, 2015, 8, 3773-3776.	6.8	49
29	Stainless Steel-Mediated Hydrogen Generation from Alkanes and Diethyl Ether and Its Application for Arene Reduction. Organic Letters, 2018, 20, 2892-2896.	4.6	48
30	New aspect of chemoselective hydrogenation utilizing heterogeneous palladium catalysts supported by nitrogen- and oxygen-containing macromolecules. Catalysis Science and Technology, 2014, 4, 260-271.	4.1	46
31	A Highly Active Heterogeneous Palladium Catalyst Supported on a Synthetic Adsorbent. Chemistry - A European Journal, 2009, 15, 834-837.	3.3	45
32	Palladium on charcoal-catalyzed ligand-free Stille coupling. Tetrahedron, 2010, 66, 8654-8660.	1.9	44
33	Synthesis of deuterium″abelled drugs by hydrogen–deuterium (H–D) exchange using heterogeneous catalysis. Journal of Labelled Compounds and Radiopharmaceuticals, 2010, 53, 686-692.	1.0	44
34	Palladium on carbon-catalyzed synthesis of 2- and 2,3-substituted indoles under heterogeneous conditions. Organic and Biomolecular Chemistry, 2010, 8, 3338.	2.8	44
35	Palladium on carbon-catalyzed solvent-free and solid-phase hydrogenation and Suzuki–Miyaura reaction. Tetrahedron, 2011, 67, 8628-8634.	1.9	43
36	Platinum on Carbon atalyzed Hydrodefluorination of Fluoroarenes using Isopropyl Alcoholâ€Water‧odium Carbonate Combination. Advanced Synthesis and Catalysis, 2012, 354, 777-782.	4.3	42

#	Article	IF	CITATIONS
37	Development of Molecular Sievesâ€Supported Palladium Catalyst and Chemoselective Hydrogenation of Unsaturated Bonds in the Presence of Nitro Groups. Advanced Synthesis and Catalysis, 2009, 351, 2091-2095.	4.3	41
38	Ligand-free Hiyama cross-coupling reaction catalyzed by palladium on carbon. RSC Advances, 2012, 2, 590-594.	3.6	40
39	Mechanistic Study of a Pd/C-Catalyzed Reduction of Aryl Sulfonates Using the Mg–MeOH–NH4OAc System. Chemistry - A European Journal, 2007, 13, 1432-1441.	3.3	39
40	Pd(0)–polyethyleneimine complex as a partial hydrogenation catalyst of alkynes to alkenes. Journal of Molecular Catalysis A, 2009, 307, 77-87.	4.8	39
41	Recent Development of Palladium-Supported Catalysts for Chemoselective Hydrogenation. Chemical and Pharmaceutical Bulletin, 2017, 65, 2-9.	1.3	39
42	Chemoselective hydrogenation using molecular sieves-supported Pd catalysts: Pd/MS3A and Pd/MS5A. Tetrahedron, 2012, 68, 8293-8299.	1.9	37
43	Easilyâ€Controlled Chemoselective Hydrogenation by using Palladium on Boron Nitride. ChemCatChem, 2013, 5, 2360-2366.	3.7	37
44	Facile and catalytic degradation method of DDT using Pd/C–Et3N system under ambient pressure and temperature. Tetrahedron, 2006, 62, 8384-8392.	1.9	34
45	Copperâ€Mediated Reductive Amination of Aryl Halides with Trimethylsilyl Azide. Chemistry - A European Journal, 2010, 16, 7372-7375.	3.3	34
46	Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System. Catalysts, 2015, 5, 18-25.	3.5	34
47	Development of a Unique Heterogeneous Palladium Catalyst for the Suzuki–Miyaura Reaction using (Hetero)aryl Chlorides and Chemoselective Hydrogenation. Advanced Synthesis and Catalysis, 2017, 359, 2269-2279.	4.3	34
48	Solvent-free Huisgen cyclization using heterogeneous copper catalysts supported on chelate resins. Green Chemistry, 2013, 15, 490-495.	9.0	33
49	Stainless-Steel-Mediated Quantitative Hydrogen Generation from Water under Ball Milling Conditions. ACS Sustainable Chemistry and Engineering, 2015, 3, 683-689.	6.7	31
50	Selective Synthesis of Primary Amines from Nitriles under Hydrogenation Conditions. Advanced Synthesis and Catalysis, 2018, 360, 1726-1732.	4.3	31
51	Continuousâ€Flow Suzukiâ€Miyaura and Mizorokiâ€Heck Reactions under Microwave Heating Conditions. Chemical Record, 2019, 19, 3-14.	5.8	31
52	Amphipathic monolith-supported palladium catalysts for chemoselective hydrogenation and cross-coupling reactions. RSC Advances, 2017, 7, 1833-1840.	3.6	30
53	Palladium on Carbonâ€Catalyzed Oneâ€Pot <i>N</i> à€Arylindole Synthesis: Intramolecular Aromatic Amination, Aromatization, and Intermolecular Aromatic Amination. Advanced Synthesis and Catalysis, 2014, 356, 1866-1872.	4.3	29
54	Direct Deuteration of Acrylic and Methacrylic Acid Derivatives Catalyzed by Platinum on Carbon in Deuterium Oxide. Advanced Synthesis and Catalysis, 2018, 360, 2303-2307.	4.3	29

#	Article	IF	CITATIONS
55	Systematic evaluation of the palladium-catalyzed hydrogenation under flow conditions. Tetrahedron, 2014, 70, 4790-4798.	1.9	28
56	Catalyst-Dependent Selective Hydrogenation of Nitriles: Selective Synthesis of Tertiary and Secondary Amines. Journal of Organic Chemistry, 2017, 82, 10939-10944.	3.2	28
57	Palladium on Carbon atalyzed Câ^'H Amination for Synthesis of Carbazoles and its Mechanistic Study. Advanced Synthesis and Catalysis, 2016, 358, 3145-3151.	4.3	27
58	Highly-functionalized arene synthesis based on palladium on carbon-catalyzed aqueous dehydrogenation of cyclohexadienes and cyclohexenes. Green Chemistry, 2018, 20, 1213-1217.	9.0	27
59	A practical method for heterogeneously-catalyzed Mizoroki–Heck reaction: Flow system with adjustment of microwave resonance as an energy source. Tetrahedron, 2018, 74, 1810-1816.	1.9	26
60	Copper-catalyzed pyrrole synthesis from 3,6-dihydro-1,2-oxazines. Green Chemistry, 2018, 20, 4409-4413.	9.0	26
61	Biarylmethane and Fused Heterocyclic Arene Synthesis via in Situ Generated <i>o</i> - and/or <i>p</i> -Naphthoquinone Methides. Journal of Organic Chemistry, 2015, 80, 5556-5565.	3.2	25
62	Palladium on Carbonâ€Catalyzed Crossâ€Coupling using Triarylbismuths. Advanced Synthesis and Catalysis, 2012, 354, 2561-2567.	4.3	24
63	Development of chelate resin-supported palladium catalysts forÂchemoselective hydrogenation. Tetrahedron, 2015, 71, 6499-6505.	1.9	24
64	Disiloxane Synthesis Based on Silicon–Hydrogen Bond Activation using Gold and Platinum on Carbon in Water or Heavy Water. Journal of Organic Chemistry, 2016, 81, 4190-4195.	3.2	24
65	Development of a Practical and Scalable Preparation using Sonication of Pd/Fibroin Catalyst for Chemoselective Hydrogenation. Synthetic Communications, 2007, 37, 4381-4388.	2.1	23
66	Pd/C-catalyzed and Water-mediated Hiyama Cross-coupling Reaction Using an Electron-deficient Phosphine Ligand. Chemistry Letters, 2011, 40, 910-912.	1.3	23
67	A Practical Protocol for the Hiyama Cross-Coupling Reaction Catalyzed by Palladium on Carbon. Synthesis, 2012, 45, 40-44.	2.3	23
68	Multiple deuteration of alkanes synergistically-catalyzed by platinum and rhodium on carbon as a mixed catalytic system. RSC Advances, 2015, 5, 13727-13732.	3.6	23
69	Mild and Direct Multiple Deuteriumâ€Labeling of Saturated Fatty Acids. Advanced Synthesis and Catalysis, 2016, 358, 3277-3282.	4.3	23
70	Pilot-Plant Study of the PCB Degradation at Ambient Temperature and Pressure. Organic Process Research and Development, 2010, 14, 1140-1146.	2.7	22
71	Microwave-Mediated Site-Selective Heating of Spherical-Carbon-Bead-Supported Platinum for the Continuous, Efficient Catalytic Dehydrogenative Aromatization of Saturated Cyclic Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 3052-3061.	6.7	21
72	Facile Arene Hydrogenation under Flow Conditions Catalyzed by Rhodium or Ruthenium on Carbon. European Journal of Organic Chemistry, 2015, 2015, 2492-2497.	2.4	20

#	Article	IF	Citations
73	Hydrogen Selfâ€Sufficient Arene Reduction to Cyclohexane Derivatives Using a Combination of Platinum on Carbon and 2â€Propanol. Advanced Synthesis and Catalysis, 2015, 357, 3667-3670.	4.3	19
74	Switching the Cleavage Sites in Palladium on Carbon-Catalyzed Carbon–Carbon Bond Disconnection. Journal of Organic Chemistry, 2016, 81, 2737-2743.	3.2	19
75	Polyethyleneimine-Modified Polymer as an Efficient Palladium Scavenger and Effective Catalyst Support for a Functional Heterogeneous Palladium Catalyst. ACS Omega, 2019, 4, 10243-10251.	3.5	19
76	Mild deuteration method of terminal alkynes in heavy water using reusable basic resin. RSC Advances, 2015, 5, 92954-92957.	3.6	18
77	Mechanism Study of Copper-Mediated One-Pot Reductive Amination of Aryl Halides Using Trimethylsilyl Azide. Journal of Organic Chemistry, 2013, 78, 8980-8985.	3.2	15
78	Unique Chemoselective Hydrogenation using a Palladium Catalyst Immobilized on Ceramic. ChemCatChem, 2015, 7, 2155-2160.	3.7	15
79	Organocatalytic Nitroaldol Reaction Associated with Deuterium‣abeling. Advanced Synthesis and Catalysis, 2018, 360, 637-641.	4.3	15
80	Practical method for PCB degradation using Pd/C–H2–Mg system. Chemosphere, 2013, 90, 57-64.	8.2	14
81	Effect of sodium acetate in atom transfer radical addition of polyhaloalkanes to olefins. RSC Advances, 2014, 4, 8657.	3.6	14
82	Tertiary-Amino-Functionalized Resin-Supported Palladium Catalyst for the Heterogeneous Suzuki–Miyaura Reaction of Aryl Chlorides. Synlett, 2015, 26, 2014-2018.	1.8	14
83	Application of Thiol-Modified Dual-Pore Silica Beads as a Practical Scavenger of Leached Palladium Catalyst in C–C Coupling Reactions. Organic Process Research and Development, 2019, 23, 462-469.	2.7	12
84	Pd/C-catalyzed dechlorination of polychlorinated biphenyls under hydrogen gas-free conditions. Journal of Hazardous Materials, 2012, 229-230, 15-19.	12.4	11
85	Palladium on Carbon-Catalyzed Gentle and Quantitative Combustion of Hydrogen at Room Temperature. Advanced Synthesis and Catalysis, 2014, 356, 313-318.	4.3	11
86	Osmium on Chelate Resin: Nonvolatile Catalyst for the Synthesis of Diols from Alkenes. Synlett, 2015, 26, 700-704.	1.8	11
87	Palladium-Catalyzed C–H Monoalkoxylation of α,β-Unsaturated Carbonyl Compounds. ACS Catalysis, 2016, 6, 3994-3997.	11.2	11
88	Heterogeneous Oneâ€Pot Carbonylation and Mizoroki–Heck Reaction in a Parallel Manner Following the Cleavage of Cinnamaldehyde Derivatives. Chemistry - A European Journal, 2017, 23, 8196-8202.	3.3	11
89	Selective N-Monoalkylation of Amide Derivatives with Trialkyl Phosphates. Synlett, 2018, 29, 322-325.	1.8	11
90	Ruthenium on Carbon Catalysed Carbonâ€Carbon Cleavage of Aryl Alkyl Ketones and Aliphatic Aldehydes in Aqueous Media. Advanced Synthesis and Catalysis, 2017, 359, 3490-3495.	4.3	10

#	Article	IF	CITATIONS
91	Palladium on Carbonâ€Catalyzed Benzylic Methoxylation for Synthesis of Mixed Acetals and Orthoesters. Chemistry - A European Journal, 2017, 23, 10974-10977.	3.3	9
92	Birch-Type Reduction of Arenes in 2-Propanol Catalyzed by Zero-Valent Iron and Platinum on Carbon. ACS Omega, 2019, 4, 11522-11531.	3.5	9
93	A Convenient Synthesis of Acyclic Adenosines with an Unsaturated Side Chain by Modification of 9-(2,3-O-lsopropylidene-D-Ribityl)Adenine. Nucleosides & Nucleotides, 1998, 17, 1333-1345.	0.5	8
94	Palladium on Carbon-Catalyzed Chemoselective Oxygen Oxidation of Aromatic Acetals. Organic Letters, 2016, 18, 5604-5607.	4.6	8
95	Esterification or Thioesterification of Carboxylic Acids with Alcohols or Thiols Using Amphipathic Monolith-SO3H Resin. Bulletin of the Chemical Society of Japan, 2021, 94, 2702-2710.	3.2	7
96	Development of Heterogeneous Palladium Catalyst Supported on Synthetic Adsorbent. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 711-721.	0.1	7
97	Microwave-Mediated Continuous Hydrogen Abstraction Reaction from 2-PrOH Catalyzed by Platinum on Carbon Bead. Catalysts, 2019, 9, 655.	3.5	6
98	Practical remediation of the PCB-contaminated soils. Journal of Environmental Health Science & Engineering, 2015, 13, 9.	3.0	5
99	Phosphateâ€Mediated Enyne Synthesis from Allenols. ChemistrySelect, 2017, 2, 876-878.	1.5	3
100	Heterogeneous One-Pot Carbonylation and Mizoroki-Heck Reaction in a Parallel Manner Following the Cleavage of Cinnamaldehyde Derivatives. Chemistry - A European Journal, 2017, 23, 8103-8103.	3.3	O