List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3420592/publications.pdf Version: 2024-02-01

		7096	10158
228	22,323	78	140
papers	citations	h-index	g-index
233 all docs	233 docs citations	233 times ranked	16447 citing authors

<u> Υλ-ΟιλΝ Ι ΑΝ</u>

#	Article	IF	CITATIONS
1	From Metal–Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. Journal of the American Chemical Society, 2011, 133, 11854-11857.	13.7	1,071
2	Recent advances in porous polyoxometalate-based metal–organic framework materials. Chemical Society Reviews, 2014, 43, 4615-4632.	38.1	845
3	Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nature Communications, 2016, 7, 11204.	12.8	803
4	Ultrastable Polymolybdate-Based Metal–Organic Frameworks as Highly Active Electrocatalysts for Hydrogen Generation from Water. Journal of the American Chemical Society, 2015, 137, 7169-7177.	13.7	584
5	Rational Design of MOF/COF Hybrid Materials for Photocatalytic H ₂ Evolution in the Presence of Sacrificial Electron Donors. Angewandte Chemie - International Edition, 2018, 57, 12106-12110.	13.8	508
6	Effect of Imidazole Arrangements on Proton-Conductivity in Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 6183-6189.	13.7	436
7	Molybdenum Disulfide/Nitrogenâ€Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1600116.	19.5	433
8	Porous Molybdenumâ€Based Hybrid Catalysts for Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 12928-12932.	13.8	368
9	Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO ₂ Photoreduction with H ₂ O. Angewandte Chemie - International Edition, 2019, 58, 12392-12397.	13.8	360
10	Biâ€Microporous Metal–Organic Frameworks with Cubane [M ₄ (OH) ₄] (M=Ni,) Tj E Chemie - International Edition, 2019, 58, 12185-12189.	∑Qq0 0 0 r 13.8	gBT /Overlocl 350
11	Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nature Communications, 2018, 9, 4466.	12.8	342
12	Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal–Organic Framework System. Angewandte Chemie - International Edition, 2018, 57, 9660-9664.	13.8	340
13	Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 13001-13005.	13.8	334
14	Semiconductor/Covalentâ€Organicâ€Framework Zâ€Scheme Heterojunctions for Artificial Photosynthesis. Angewandte Chemie - International Edition, 2020, 59, 6500-6506.	13.8	328
15	Mesoporous Metalâ€Organic Frameworks with Sizeâ€ŧunable Cages: Selective CO ₂ Uptake, Encapsulation of Ln ³⁺ Cations for Luminescence, and Columnâ€Chromatographic Dye Separation. Advanced Materials, 2011, 23, 5015-5020.	21.0	321
16	POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage. Nano Energy, 2017, 34, 205-214.	16.0	308
17	Monometallic Catalytic Models Hosted in Stable Metal–Organic Frameworks for Tunable CO ₂ Photoreduction. ACS Catalysis, 2019, 9, 1726-1732.	11.2	297
18	Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nature Communications, 2020, 11, 497.	12.8	280

#	Article	IF	CITATIONS
19	N-rich zeolite-like metal–organic framework with sodalite topology: high CO2 uptake, selective gas adsorption and efficient drug delivery. Chemical Science, 2012, 3, 2114.	7.4	277
20	Hexagonal@Cubic CdS Core@Shell Nanorod Photocatalyst for Highly Active Production of H ₂ with Unprecedented Stability. Advanced Materials, 2016, 28, 8906-8911.	21.0	271
21	A Water-Stable Metal–Organic Framework for Highly Sensitive and Selective Sensing of Fe ³⁺ Ion. Inorganic Chemistry, 2016, 55, 10580-10586.	4.0	230
22	Polyoxometalateâ€Based Compounds for Photo―and Electrocatalytic Applications. Angewandte Chemie - International Edition, 2020, 59, 20779-20793.	13.8	222
23	Self-Assembly of Polyoxometalate-Based Metal Organic Frameworks Based on Octamolybdates and Copper-Organic Units: from Cu ^{II} , Cu ^{I,II} to Cu ^I via Changing Organic Amine. Inorganic Chemistry, 2008, 47, 8179-8187.	4.0	214
24	Installing earth-abundant metal active centers to covalent organic frameworks for efficient heterogeneous photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2019, 254, 624-633.	20.2	212
25	Confining and Highly Dispersing Single Polyoxometalate Clusters in Covalent Organic Frameworks by Covalent Linkages for CO ₂ Photoreduction. Journal of the American Chemical Society, 2022, 144, 1861-1871.	13.7	197
26	Stable Luminescent Metal–Organic Frameworks as Dual-Functional Materials To Encapsulate Ln ³⁺ lons for White-Light Emission and To Detect Nitroaromatic Explosives. Inorganic Chemistry, 2015, 54, 3290-3296.	4.0	196
27	From molecular metal complex to metal-organic framework: The CO2 reduction photocatalysts with clear and tunable structure. Coordination Chemistry Reviews, 2019, 390, 86-126.	18.8	196
28	Enhanced Cuprophilic Interactions in Crystalline Catalysts Facilitate the Highly Selective Electroreduction of CO ₂ to CH ₄ . Journal of the American Chemical Society, 2021, 143, 3808-3816.	13.7	187
29	Polyoxometalate-based materials for sustainable and clean energy conversion and storage. EnergyChem, 2019, 1, 100021.	19.1	183
30	Metal–organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2014, 2, 6316-6319.	10.3	179
31	Stable Dioxinâ€Linked Metallophthalocyanine Covalent Organic Frameworks (COFs) as Photoâ€Coupled Electrocatalysts for CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 4864-4871.	13.8	179
32	Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction. Scientific Reports, 2014, 4, 5130.	3.3	174
33	Synergistic Conductivity Effect in a Proton Sources-Coupled Metal–Organic Framework. ACS Energy Letters, 2017, 2, 2313-2318.	17.4	170
34	Spontaneous resolution of a 3D chiral polyoxometalate-based polythreaded framework consisting of an achiral ligand. Chemical Communications, 2008, , 58-60.	4.1	169
35	One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. Scientific Reports, 2014, 4, 7597.	3.3	167
36	Polyoxometalate-based metal–organic framework-derived hybrid electrocatalysts for highly efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 1202-1207.	10.3	165

#	Article	IF	CITATIONS
37	Self-Assembly of 2D→2D Interpenetrating Coordination Polymers Showing Polyrotaxane- and Polycatenane-like Motifs: Influence of Various Ligands on Topological Structural Diversity. Inorganic Chemistry, 2008, 47, 10600-10610.	4.0	162
38	Stable Heterometallic Clusterâ€Based Organic Framework Catalysts for Artificial Photosynthesis. Angewandte Chemie - International Edition, 2020, 59, 2659-2663.	13.8	162
39	Polyoxometalate-Based Metal–Organic Frameworks with Conductive Polypyrrole for Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 32265-32270.	8.0	159
40	A Microporous Anionic Metal–Organic Framework for Sensing Luminescence of Lanthanide(III) Ions and Selective Absorption of Dyes by Ionic Exchange. Chemistry - A European Journal, 2014, 20, 5625-5630.	3.3	154
41	Tunable MoS ₂ /SnO ₂ P–N Heterojunctions for an Efficient Trimethylamine Gas Sensor and 4-Nitrophenol Reduction Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 12375-12384.	6.7	151
42	Adenine Components in Biomimetic Metal–Organic Frameworks for Efficient CO ₂ Photoconversion. Angewandte Chemie - International Edition, 2019, 58, 5226-5231.	13.8	150
43	Supramolecular Isomerism with Polythreaded Topology Based on [Mo ₈ O ₂₆] ⁴⁻ Isomers. Inorganic Chemistry, 2008, 47, 529-534.	4.0	148
44	Creating Well-Defined Hexabenzocoronene in Zirconium Metal–Organic Framework by Postsynthetic Annulation. Journal of the American Chemical Society, 2019, 141, 2054-2060.	13.7	148
45	A highly stable polyoxometalate-based metal–organic framework with π–π stacking for enhancing lithium ion battery performance. Journal of Materials Chemistry A, 2017, 5, 8477-8483.	10.3	136
46	Bimetallic Carbides-Based Nanocomposite as Superior Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 16977-16985.	8.0	135
47	Covalent Organic Framework Based Functional Materials: Important Catalysts for Efficient CO ₂ Utilization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	128
48	Multielectron transportation of polyoxometalate-grafted metalloporphyrin coordination frameworks for selective CO2-to-CH4 photoconversion. National Science Review, 2020, 7, 53-63.	9.5	127
49	Metal–organic framework-based foams for efficient microplastics removal. Journal of Materials Chemistry A, 2020, 8, 14644-14652.	10.3	125
50	Spontaneous Resolution of Chiral Polyoxometalateâ€Based Compounds Consisting of 3D Chiral Inorganic Skeletons Assembled from Different Helical Units. Chemistry - A European Journal, 2008, 14, 9999-10006.	3.3	123
51	Metal–Organic Frameworks for Photo/Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100033.	5.8	123
52	Solid-phase hot-pressing of POMs-ZIFs precursor and derived phosphide for overall water splitting. Applied Catalysis B: Environmental, 2019, 245, 528-535.	20.2	120
53	A multifunctional microporous anionic metal–organic framework for column-chromatographic dye separation and selective detection and adsorption of Cr ³⁺ . Journal of Materials Chemistry A, 2015, 3, 23426-23434.	10.3	117
54	Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nature Communications, 2021, 12, 6390.	12.8	117

#	Article	IF	CITATIONS
55	High Electrical Conductivity in a 2D MOF with Intrinsic Superprotonic Conduction and Interfacial Pseudo-capacitance. Matter, 2020, 2, 711-722.	10.0	115
56	Carbon quantum dots enriching molecular nickel polyoxometalate over CdS semiconductor for photocatalytic water splitting. Applied Catalysis B: Environmental, 2021, 293, 120214.	20.2	112
57	Cobalt Phosphides Nanocrystals Encapsulated by Pâ€Doped Carbon and <i>Married</i> with Pâ€Doped Graphene for Overall Water Splitting. Small, 2019, 15, e1804546.	10.0	110
58	Hetero-metallic active sites coupled with strongly reductive polyoxometalate for selective photocatalytic CO ₂ -to-CH ₄ conversion in water. Chemical Science, 2019, 10, 185-190.	7.4	102
59	Self-Assembly of Giant Mo ₂₄₀ Hollow Opening Dodecahedra. Journal of the American Chemical Society, 2020, 142, 13982-13988.	13.7	102
60	Face-Sharing Archimedean Solids Stacking for the Construction of Mixed-Ligand Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 13841-13848.	13.7	101
61	Cobalt@Nitrogenâ€Doped Porous Carbon Fiber Derived from the Electrospun Fiber of Bimetal–Organic Framework for Highly Active Oxygen Reduction. Small Methods, 2018, 2, 1800049.	8.6	100
62	Polypyrrole–polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors. Chemical Communications, 2015, 51, 12377-12380.	4.1	99
63	An unprecedented (6,8)-connected self-penetrating network based on two distinct zinc clusters. Chemical Communications, 2007, , 4863.	4.1	98
64	An ultrastable porous metal–organic framework luminescent switch towards aromatic compounds. Materials Horizons, 2015, 2, 245-251.	12.2	98
65	Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery. Chemical Communications, 2017, 53, 7804-7807.	4.1	97
66	Entangled structures in polyoxometalate-based coordination polymers. Coordination Chemistry Reviews, 2014, 279, 141-160.	18.8	96
67	Implanting Numerous Hydrogenâ€Bonding Networks in a Cuâ€Porphyrinâ€Based Nanosheet to Boost CH ₄ Selectivity in Neutralâ€Media CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2021, 60, 21952-21958.	13.8	96
68	Encapsulating ionic liquids into POM-based MOFs to improve their conductivity for superior lithium storage. Journal of Materials Chemistry A, 2018, 6, 8735-8741.	10.3	95
69	Polyoxometalate-based crystalline tubular microreactor: redox-active inorganic–organic hybrid materials producing gold nanoparticles and catalytic properties. Chemical Science, 2012, 3, 705-710.	7.4	93
70	Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. Nano Energy, 2020, 67, 104233.	16.0	93
71	Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solidâ ϵ^4 gas mode. Coordination Chemistry Reviews, 2021, 438, 213906.	18.8	93
72	Diamondoid-structured polymolybdate-based metal–organic frameworks as high-capacity anodes for lithium-ion batteries. Chemical Communications, 2017, 53, 5204-5207.	4.1	92

#	Article	IF	CITATIONS
73	Coralloid Co ₂ P ₂ O ₇ Nanocrystals Encapsulated by Thin Carbon Shells for Enhanced Electrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 22534-22544.	8.0	91
74	Coordination polymer-based conductive materials: ionic conductivity <i>vs.</i> electronic conductivity. Journal of Materials Chemistry A, 2019, 7, 24059-24091.	10.3	90
75	Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO ₂ Photoreduction with H ₂ O. Angewandte Chemie, 2019, 131, 12522-12527.	2.0	88
76	Single-Atom Zinc and Anionic Framework as Janus Separator Coatings for Efficient Inhibition of Lithium Dendrites and Shuttle Effect. ACS Nano, 2021, 15, 13436-13443.	14.6	87
77	A stable metal–organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 7361-7367.	10.3	86
78	Hydrophobic Polyoxometalate-Based Metal-Organic Framework for Efficient CO ₂ Photoconversion. ACS Applied Materials & Interfaces, 2019, 11, 25790-25795.	8.0	86
79	Derivation and Decoration of Nets with Trigonal-Prismatic Nodes: A Unique Route to Reticular Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5299-5307.	13.7	84
80	CoV ₂ O ₆ –V ₂ O ₅ Coupled with Porous N-Doped Reduced Graphene Oxide Composite as a Highly Efficient Electrocatalyst for Oxygen Evolution. ACS Energy Letters, 2017, 2, 1327-1333.	17.4	84
81	Polyoxometalate-Incorporated Metallapillararene/Metallacalixarene Metal-Organic Frameworks as Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 2017, 56, 8311-8318.	4.0	79
82	Imparting CO ₂ Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrinâ€based Covalent Organic Framework. Angewandte Chemie - International Edition, 2022, 61, e202114648.	13.8	78
83	pH-dependent self-assembly of divalent metals with a new ligand containing polycarboxylate: syntheses, crystal structures, luminescent and magnetic properties. CrystEngComm, 2010, 12, 2157.	2.6	76
84	Strategic hierarchical improvement of superprotonic conductivity in a stable metal–organic framework system. Journal of Materials Chemistry A, 2019, 7, 25165-25171.	10.3	76
85	Rational Design of MOF/COF Hybrid Materials for Photocatalytic H ₂ Evolution in the Presence of Sacrificial Electron Donors. Angewandte Chemie, 2018, 130, 12282-12286.	2.0	75
86	Stepped Channels Integrated Lithium–Sulfur Separator via Photoinduced Multidimensional Fabrication of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 10147-10154.	13.8	74
87	Construction and property investigation of transition-metal complexes modified octamolybdate hybrid materials based on V-shaped organic ligands. CrystEngComm, 2010, 12, 434-445.	2.6	73
88	Engineering Zn _{1–<i>x</i>} Cd _{<i>x</i>} S/CdS Heterostructures with Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces, 2016, 8, 14535-14541.	8.0	73
89	POMOF/SWNT Nanocomposites with Prominent Peroxidase-Mimicking Activity for <scp>l</scp> -Cysteine "On–Off Switch―Colorimetric Biosensing. ACS Applied Materials & Interfaces, 2019, 11, 16896-16904.	8.0	72
90	An Anionic Interpenetrated Zeoliteâ€Like Metal–Organic Framework Composite As a Tunable Dualâ€Emission Luminescent Switch for Detecting Volatile Organic Molecules. Chemistry - A European Journal, 2016, 22, 17298-17304.	3.3	71

#	Article	IF	CITATIONS
91	Selfâ€Assembly of a Phosphateâ€Centered Polyoxoâ€Titanium Cluster: Discovery of the Heteroatom Keggin Family. Angewandte Chemie - International Edition, 2019, 58, 17260-17264.	13.8	71
92	Controllable synthesis of a non-interpenetrating microporous metal–organic framework based on octahedral cage-like building units for highly efficient reversible adsorption of iodine. Chemical Communications, 2012, 48, 10001.	4.1	70
93	Construction of different dimensional inorganic–organic hybrid materials based on polyoxometalates and metal–organic units via changing metal ions: from non-covalent interactions to covalent connections. Dalton Transactions, 2008, , 3824.	3.3	69
94	Tailorâ€Made Metal–Organic Frameworks from Functionalized Molecular Building Blocks and Lengthâ€Adjustable Organic Linkers by Stepwise Synthesis. Chemistry - A European Journal, 2012, 18, 8076-8083.	3.3	69
95	Two-dimensional nanostructures of non-layered ternary thiospinels and their bifunctional electrocatalytic properties for oxygen reduction and evolution: the case of CuCo ₂ S ₄ nanosheets. Inorganic Chemistry Frontiers, 2016, 3, 1501-1509.	6.0	69
96	Single Metal Site and Versatile Transfer Channel Merged into Covalent Organic Frameworks Facilitate High-Performance Li-CO ₂ Batteries. ACS Central Science, 2021, 7, 175-182.	11.3	69
97	Two eight-connected self-penetrating porous metal–organic frameworks: configurational isomers caused by different linking modes between terephthalate and binuclear nickel building units. CrystEngComm, 2009, 11, 274-277.	2.6	68
98	A highly stable polyoxometalate-based metal–organic framework with an ABW zeolite-like structure. Chemical Communications, 2017, 53, 10054-10057.	4.1	66
99	Polyoxometalate-encapsulated twenty-nuclear silver-tetrazole nanocage frameworks as highly active electrocatalysts for the hydrogen evolution reaction. Chemical Communications, 2018, 54, 1964-1967.	4.1	66
100	A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Materials, 2022, 47, 262-270.	18.0	66
101	Self-assembly of a mesoporous ZnS/mediating interface/CdS heterostructure with enhanced visible-light hydrogen-production activity and excellent stability. Chemical Science, 2015, 6, 5263-5268.	7.4	65
102	Polyoxometalate precursors for precisely controlled synthesis of bimetallic sulfide heterostructure through nucleation-doping competition. Nanoscale, 2018, 10, 8404-8412.	5.6	65
103	d10-Metal coordination polymers based on analogue di(pyridyl)imidazole derivatives and 4,4â€2-oxydibenzoic acid: influence of flexible and angular characters of neutral ligands on structural diversity. Dalton Transactions, 2008, , 6796.	3.3	64
104	Porphyrinâ€Based COF 2D Materials: Variable Modification of Sensing Performances by Postâ€Metallization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	63
105	Solid-state structural transformation doubly triggered by reaction temperature and time in 3D metal-organic frameworks: great enhancement of stability and gas adsorption. Chemical Science, 2014, 5, 1368.	7.4	62
106	Metalâ^'Organic Frameworks Based on Different Benzimidazole Derivatives: Effect of Length and Substituent Groups of the Ligands on the Structures. Crystal Growth and Design, 2010, 10, 1161-1170.	3.0	61
107	Different Protonic Species Affecting Proton Conductivity in Hollow Spherelike Polyoxometalates. ACS Applied Materials & Interfaces, 2019, 11, 7030-7036.	8.0	61
108	Syntheses of Exceptionally Stable Aluminum(III) Metal–Organic Frameworks: How to Grow Highâ€Quality, Large, Single Crystals. Chemistry - A European Journal, 2017, 23, 15518-15528.	3.3	60

#	Article	IF	CITATIONS
109	Disclosing CO2 Activation Mechanism by Hydroxyl-Induced Crystalline Structure Transformation in Electrocatalytic Process. Matter, 2019, 1, 1656-1668.	10.0	60
110	Controllable Synthesis of COFsâ€Based Multicomponent Nanocomposites from Coreâ€Shell to Yolkâ€Shell and Hollowâ€Sphere Structure for Artificial Photosynthesis. Advanced Materials, 2021, 33, e2105002.	21.0	60
111	Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 13181-13185.	2.0	58
112	Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides. Nature Communications, 2022, 13, .	12.8	58
113	Co-Doped Zn _{1â^x} Cd _x S nanocrystals from metal–organic framework precursors: porous microstructure and efficient photocatalytic hydrogen evolution. Dalton Transactions, 2017, 46, 10553-10557.	3.3	57
114	Ferrocene-Functionalized Polyoxo-Titanium Cluster for CO ₂ Photoreduction. ACS Catalysis, 2021, 11, 4510-4519.	11.2	57
115	Partial Coordinationâ€Perturbed Biâ€Copper Sites for Selective Electroreduction of CO ₂ to Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 19829-19835.	13.8	57
116	Hierarchically phosphorus doped bimetallic nitrides arrays with unique interfaces for efficient water splitting. Applied Catalysis B: Environmental, 2019, 243, 470-480.	20.2	55
117	Three novel 3D (3,8)-connected metal–organic frameworks constructed from flexible-rigid mixed ligands. CrystEngComm, 2009, 11, 1842.	2.6	54
118	Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal–Organic Framework System. Angewandte Chemie, 2018, 130, 9808-9812.	2.0	54
119	Nickel Glyoximate Based Metal–Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	54
120	Adenine Components in Biomimetic Metal–Organic Frameworks for Efficient CO ₂ Photoconversion. Angewandte Chemie, 2019, 131, 5280-5285.	2.0	52
121	Chloroplast-like porous bismuth-based core–shell structure for high energy efficiency CO2 electroreduction. Science Bulletin, 2020, 65, 1635-1642.	9.0	52
122	Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Liâ^'S Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	52
123	Synergistic effect of mesoporous Mn ₂ O ₃ -supported Pd nanoparticle catalysts for electrocatalytic oxygen reduction reaction with enhanced performance in alkaline medium. Journal of Materials Chemistry A, 2014, 2, 1272-1276.	10.3	51
124	Liquid-free single-crystal to single-crystal transformations in coordination polymers. Inorganic Chemistry Frontiers, 2018, 5, 279-300.	6.0	49
125	Assembly of Two Mesoporous Anionic Metal–Organic Frameworks for Fluorescent Sensing of Metal Ions and Organic Dyes Separation. Inorganic Chemistry, 2021, 60, 167-174.	4.0	49
126	Polyoxometalate-Based Metal–Organic Framework on Carbon Cloth with a Hot-Pressing Method for High-Performance Lithium-Ion Batteries. Inorganic Chemistry, 2018, 57, 11726-11731.	4.0	48

#	Article	IF	CITATIONS
	Biâ€Microporous Metal–Organic Frameworks with Cubane [M ₄ (OH) ₄] (M=Ni,) Tj	ETQq1 1 0.	784314 rgBT
127	Chemie, 2019, 131, 12313-12317.	2.0	47
128	Efficient Charge Migration in Chemically-Bonded Prussian Blue Analogue/CdS with Beaded Structure for Photocatalytic H ₂ Evolution. Jacs Au, 2021, 1, 212-220.	7.9	47
129	Assembly of Multifold Helical Polyoxometalate-Based Metal–Organic Frameworks as Anode Materials in Lithium-Ion Batteries. Inorganic Chemistry, 2018, 57, 3865-3872.	4.0	46
130	Improved conductivity of a new Co(<scp>ii</scp>)-MOF by assembled acetylene black for efficient hydrogen evolution reaction. CrystEngComm, 2018, 20, 4804-4809.	2.6	45
131	Implanting Polypyrrole in Metal-Porphyrin MOFs: Enhanced Electrocatalytic Performance for CO ₂ RR. ACS Applied Materials & Interfaces, 2021, 13, 54959-54966.	8.0	45
132	Introduction of Molecular Building Blocks to Improve the Stability of Metal–Organic Frameworks for Efficient Mercury Removal. Inorganic Chemistry, 2018, 57, 6118-6123.	4.0	44
133	Semiconductor/Covalentâ€Organicâ€Framework Zâ€5cheme Heterojunctions for Artificial Photosynthesis. Angewandte Chemie, 2020, 132, 6562-6568.	2.0	44
134	Predesign of Catalytically Active Sites via Stable Coordination Cluster Model System for Electroreduction of CO ₂ to Ethylene. Angewandte Chemie - International Edition, 2021, 60, 26210-26217.	13.8	44
135	A novel (4,8)-connected 3D polyoxometalate-based metal–organic framework containing an in situ ligand. CrystEngComm, 2008, 10, 1129.	2.6	43
136	Molecular tectonics of metal–organic frameworks based on ligand-modulated polynuclear zinc SBUs and aromatic multicarboxylic acids. CrystEngComm, 2011, 13, 889-896.	2.6	43
137	Solid-phase hot-pressing synthesis of POMOFs on carbon cloth and derived phosphides for all pH value hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 21969-21977.	10.3	43
138	Self-assembly of anthraquinone covalent organic frameworks as 1D superstructures for highly efficient CO2 electroreduction to CH4. Science Bulletin, 2021, 66, 1659-1659.	9.0	43
139	The Enhancement on Proton Conductivity of Stable Polyoxometalateâ€Based Coordination Polymers by the Synergistic Effect of MultiProton Units. Chemistry - A European Journal, 2016, 22, 9299-9304.	3.3	42
140	Encapsulation of an iridium complex in a metal–organic framework to give a composite with efficient white light emission. Inorganic Chemistry Frontiers, 2017, 4, 547-552.	6.0	42
141	Carbon nanodots functional MOFs composites by a stepwise synthetic approach: enhanced H ₂ storage and fluorescent sensing. CrystEngComm, 2015, 17, 1080-1085.	2.6	41
142	Efficient Electrocatalyst for the Hydrogen Evolution Reaction Derived from Polyoxotungstate/Polypyrrole/Graphene. ChemSusChem, 2017, 10, 2402-2407.	6.8	41
143	Polyoxometalate-pillared metal–organic frameworks synthesized by surfactant-assisted strategy and incorporated with carbon nanotubes for energy storage. Journal of Materials Chemistry A, 2020, 8, 25316-25322.	10.3	41
144	Controllable synthesis of microporous, nanotubular and mesocage-like metal–organic frameworks by adjusting the reactant ratio and modulated luminescence properties of Alq3@MOF composites. Journal of Materials Chemistry, 2012, 22, 17947.	6.7	40

#	Article	IF	CITATIONS
145	Highly active Co–Mo–C/NRGO composite as an efficient oxygen electrode for water–oxygen redox cycle. Journal of Materials Chemistry A, 2016, 4, 18100-18106.	10.3	40
146	Calix[8]arene-constructed stable polyoxo-titanium clusters for efficient CO ₂ photoreduction. Green Chemistry, 2020, 22, 5325-5332.	9.0	40
147	Formation of a mixed-valence Cu(<scp>i</scp>)/Cu(<scp>ii</scp>) metal–organic framework with the full light spectrum and high selectivity of CO ₂ photoreduction into CH ₄ . Chemical Science, 2020, 11, 10143-10148.	7.4	40
148	Stable Dioxinâ€Linked Metallophthalocyanine Covalent Organic Frameworks (COFs) as Photoâ€Coupled Electrocatalysts for CO ₂ Reduction. Angewandte Chemie, 2021, 133, 4914-4921.	2.0	40
149	A series of novel chiral lanthanide coordination polymers with channels constructed from 16Ln-based cage-like building units. CrystEngComm, 2010, 12, 1147-1152.	2.6	39
150	An unprecedented (3,4,24)-connected heteropolyoxozincate organic framework as heterogeneous crystalline Lewis acid catalyst for biodiesel production. Scientific Reports, 2013, 3, 2616.	3.3	39
151	Polyoxomolybdate–Polypyrrole/Reduced Graphene Oxide Nanocomposite as High-Capacity Electrodes for Lithium Storage. ACS Omega, 2017, 2, 5684-5690.	3.5	39
152	<i>In situ</i> growth of a POMOF-derived nitride based composite on Cu foam to produce hydrogen with enhanced water dissociation kinetics. Journal of Materials Chemistry A, 2019, 7, 13559-13566.	10.3	39
153	Rational Electrolyte Design to Form Inorganic–Polymeric Interphase on Silicon-Based Anodes. ACS Energy Letters, 2021, 6, 1811-1820.	17.4	39
154	Synthesis and characterization of two {Mo ₆ }-based/templated metal–organic frameworks. CrystEngComm, 2011, 13, 1461-1466.	2.6	38
155	Polyoxometalateâ€Based Compounds for Photo―and Electrocatalytic Applications. Angewandte Chemie, 2020, 132, 20963-20977.	2.0	38
156	A Pair of Rare Three-Dimensional Chiral Polyoxometalate-Based Metal–Organic Framework Enantiomers Featuring Superior Performance as the Anode of Lithium-Ion Battery. ACS Applied Energy Materials, 2018, 1, 4931-4938.	5.1	37
157	Two new pseudo-isomeric nickel (II) metal–organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Metals, 2021, 40, 489-498.	7.1	36
158	Engineering the Morphology and Configuration of Ternary Heterostructures for Improving Their Photocatalytic Activity. ACS Applied Materials & amp; Interfaces, 2016, 8, 4516-4522.	8.0	34
159	Rapid Production of Metal–Organic Frameworks Based Separators in Industrial‣evel Efficiency. Advanced Science, 2020, 7, 2002190.	11.2	34
160	Efficient Electron Transfer from Electronâ€5ponge Polyoxometalate to Singleâ€Metal Site Metal–Organic Frameworks for Highly Selective Electroreduction of Carbon Dioxide. Small, 2021, 17, e2100762.	10.0	34
161	A Wellâ€Established POMâ€based Singleâ€Crystal Protonâ€Conducting Model Incorporating Multiple Weak Interactions. Chemistry - A European Journal, 2018, 24, 2365-2369.	3.3	32
162	Intermediate-Temperature Anhydrous High Proton Conductivity Triggered by Dynamic Molecular Migration in Trinuclear Cluster Lattice. CheM, 2020, 6, 2272-2282.	11.7	31

#	Article	IF	CITATIONS
163	Self-assembly of single metal sites embedded covalent organic frameworks into multi-dimensional nanostructures for efficient CO2 electroreduction. Chinese Chemical Letters, 2022, 33, 1439-1444.	9.0	31
164	Functional heterometallic coordination polymers with metalloligands as tunable luminescent crystalline materials. Journal of Materials Chemistry, 2012, 22, 19673.	6.7	30
165	Sulfur-containing bimetallic metal organic frameworks with multi-fold helix as anode of lithium ion batteries. Dalton Transactions, 2018, 47, 4827-4832.	3.3	30
166	Anion-directed genuine meso-helical supramolecular isomers of two 1D Ag(i) complexes based on arene-linked bis(pyrazolyl)methane ligands. CrystEngComm, 2010, 12, 3458.	2.6	29
167	Unprecedented interweaving of single-helical chains into a chiral metal–organic framework based on a flexible ligand. CrystEngComm, 2009, 11, 1711.	2.6	28
168	Electrochemical monitoring of an important biomarker and target protein: VEGFR2 in cell lysates. Scientific Reports, 2014, 4, 3982.	3.3	28
169	Combination of POMs and deliberately designed macrocations: a rational approach for synthesis of POM-pillared metal–organic framework. Dalton Transactions, 2009, , 940-947.	3.3	27
170	SbSI Nanocrystals: An Excellent Visible Light Photocatalyst with Efficient Generation of Singlet Oxygen. ACS Sustainable Chemistry and Engineering, 2018, 6, 12166-12175.	6.7	27
171	Polyoxometalateâ€Decorated g ₃ N ₄ â€Wrapping Snowflakeâ€Like CdS Nanocrystal for Enhanced Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 15930-15936.	3.3	27
172	Exploring the Influence of Halogen Coordination Effect of Stable Bimetallic MOFs on Oxygen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 15830-15836.	3.3	27
173	Exfoliation of covalent organic frameworks into MnO2-loaded ultrathin nanosheets as efficient cathode catalysts for Li-CO2 batteries. Cell Reports Physical Science, 2021, 2, 100392.	5.6	27
174	A well-defined dual Mn-site based metal–organic framework to promote CO ₂ reduction/evolution in Li–CO ₂ batteries. Chemical Communications, 2021, 57, 8937-8940.	4.1	26
175	Design of Crystalline Reduction–Oxidation Cluster-Based Catalysts for Artificial Photosynthesis. Jacs Au, 2021, 1, 1288-1295.	7.9	26
176	pH-Tuned self-assembly of organic–inorganic hybrids based on different vanadate chains, Zn(<scp>ii</scp>) ions and flexible ligands: crystallizing in polar and centrosymmetric space group. CrystEngComm, 2011, 13, 779-786.	2.6	25
177	Self-assembly of polyoxometalate/reduced graphene oxide composites induced by ionic liquids as a high-rate cathode for batteries: "killing two birds with one stone― Journal of Materials Chemistry A, 2018, 6, 1743-1750.	10.3	25
178	Stable Heterometallic Clusterâ€Based Organic Framework Catalysts for Artificial Photosynthesis. Angewandte Chemie, 2020, 132, 2681-2685.	2.0	25
179	Investigation of the Enhanced Lithium Battery Storage in a Polyoxometalate Model: From Solid Spheres to Hollow Balls. Small Methods, 2018, 2, 1800154.	8.6	24
180	Identification of the activity source of CO2 electroreduction by strategic catalytic site distribution in stable supramolecular structure system. National Science Review, 2021, 8, nwaa195.	9.5	23

#	ARTICLE	IF	CITATIONS
181	Redox-active polyoxometalate-based crystalline material-immobilized noble metal nanoparticles: spontaneous reduction and synergistic catalytic activity. Journal of Materials Chemistry, 2012, 22, 21040.	6.7	22
182	Multipoint interactions enhanced H2 storage and organosulfur removal in a microporous metal–organic framework. Journal of Materials Chemistry A, 2013, 1, 11111.	10.3	22
183	Covalent Organic Framework Based Functional Materials: Important Catalysts for Efficient CO ₂ Utilization. Angewandte Chemie, 2022, 134, .	2.0	22
184	Constructing crystalline redox catalyst to achieve efficient CO2 photoreduction reaction in water vapor. Chemical Engineering Journal, 2022, 442, 136157.	12.7	22
185	Theoretical and experimental studies on three water-stable, isostructural, paddlewheel based semiconducting metal–organic frameworks. Dalton Transactions, 2017, 46, 8204-8218.	3.3	20
186	Selfâ€Assembly of Hydroxyl Metal–Organic Polyhedra and Polymer into Cuâ€Based Hollow Spheres for Productâ€Selective CO ₂ Electroreduction. Small Structures, 2021, 2, 2100012.	12.0	20
187	Imparting CO ₂ Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrinâ€based Covalent Organic Framework. Angewandte Chemie, 2022, 134, .	2.0	20
188	Superprotonic Conductivity of a Functionalized Metal–Organic Framework at Ambient Conditions. ACS Applied Materials & Interfaces, 2022, 14, 9264-9271.	8.0	20
189	Proton conductivity resulting from different triazole-based ligands in two new bifunctional decavanadates. RSC Advances, 2018, 8, 18560-18566.	3.6	18
190	Crystalline Porous Materials-based Solid-State Electrolytes for Lithium Metal Batteries. EnergyChem, 2022, 4, 100073.	19.1	18
191	A viologen-functionalized metal–organic framework for efficient CO ₂ photoreduction reaction. Chemical Communications, 2022, 58, 7507-7510.	4.1	18
192	A stable polyoxometalate-based porous coordination polymer with high proton conductivity. CrystEngComm, 2018, 20, 6077-6081.	2.6	16
193	Polyoxometalate-assisted fabrication of the Pd nanoparticle/reduced graphene oxide nanocomposite with enhanced methanol-tolerance for the oxygen reduction reaction. New Journal of Chemistry, 2016, 40, 914-918.	2.8	15
194	Single-metal site-embedded conjugated macrocyclic hybrid catalysts enable boosted CO2 reduction and evolution kinetics in Li-CO2 batteries. Cell Reports Physical Science, 2021, 2, 100583.	5.6	15
195	Versatile Synthesis of Pdâ~'M (M=Cr, Mo, W) Alloy Nanosheets Flowerâ€like Superstructures for Efficient Oxygen Reduction Electrocatalysis. ChemCatChem, 2020, 12, 4138-4148.	3.7	14
196	Implanting Numerous Hydrogenâ€Bonding Networks in a Cuâ€Porphyrinâ€Based Nanosheet to Boost CH 4 Selectivity in Neutralâ€Media CO 2 Electroreduction. Angewandte Chemie, 2021, 133, 22123-22129.	2.0	14
197	Nickel Glyoximate Based Metal–Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	14
198	Monoclinic Copper(I) Selenide Nanocrystals and Copper(I) Selenide/Palladium Heterostructures: Synthesis, Characterization, and Surface-Enhanced Raman Scattering Performance. European Journal of Inorganic Chemistry, 2015, 2015, 2229-2236.	2.0	13

#	Article	IF	CITATIONS
199	Porphyrinâ€Based COF 2D Materials: Variable Modification of Sensing Performances by Postâ€Metallization. Angewandte Chemie, 0, , .	2.0	13
200	Establishing spatially elastic hydrogen-bonding interaction in electrochemical process for selective CO2-to-CH4 conversion. Chem Catalysis, 2021, 1, 1133-1144.	6.1	12
201	Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Liâ^'S Batteries. Angewandte Chemie, 2022, 134, .	2.0	12
202	Boosting CO2 electroreduction performance over fullerene-modified MOF-545-Co promoted by π–π interaction. Chinese Chemical Letters, 2023, 34, 107459.	9.0	12
203	Self-Sacrificing Template of the POMs-Based Composite for the High-Performance Organic–Inorganic Hybrid Cathode of Lithium-Ion Batteries. Inorganic Chemistry, 2022, 61, 11182-11188.	4.0	12
204	Construction of an Electron Bridge in Polyoxometalates/Graphene Oxide Ultrathin Nanosheets To Boost the Lithium Storage Performance. Energy & Fuels, 2020, 34, 16968-16977.	5.1	11
205	Selfâ€Assembly of a Phosphateâ€Centered Polyoxoâ€Titanium Cluster: Discovery of the Heteroatom Keggin Family. Angewandte Chemie, 2019, 131, 17420-17424.	2.0	10
206	Axial Cl/Br atom-mediated CO ₂ electroreduction performance in a stable porphyrin-based metal–organic framework. Chemical Communications, 2020, 56, 14817-14820.	4.1	10
207	Two new silver triazole frameworks with polyoxometalate templates. RSC Advances, 2016, 6, 108328-108334.	3.6	9
208	In situ synthesis of porous ZnO-embedded Zn _{1â^'x} Cd _x S/CdS heterostructures for enhanced photocatalytic activity. CrystEngComm, 2016, 18, 1446-1452.	2.6	9
209	Theoretical Studies on Electronic Spectra and Second-order Nonlinear Optical Properties of Glucosyl Substituted Barbituric Acid Derivatives. Chinese Journal of Chemistry, 2006, 24, 119-123.	4.9	8
210	A novel 3-connected [3 + 3] topological net showing both rotaxane- and catenane-like motifs. CrystEngComm, 2011, 13, 4945.	2.6	8
211	Stepped Channels Integrated Lithium–Sulfur Separator via Photoinduced Multidimensional Fabrication of Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 10235-10242.	2.0	8
212	Ferrocene-Functionalized Crystalline Biomimetic Catalysts for Efficient CO ₂ Photoreduction. Inorganic Chemistry, 2022, 61, 2167-2173.	4.0	8
213	Crystalline mixed-valence copper supramolecular isomers for electroreduction of CO ₂ to hydrocarbons. Journal of Materials Chemistry A, 2021, 9, 23477-23484.	10.3	7
214	Three-in-one Fe-porphyrin based hybrid nanosheets for enhanced CO2 reduction and evolution kinetics in Li-CO2 battery. Chinese Chemical Letters, 2023, 34, 107633.	9.0	7
215	Redoxâ€Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	2.0	6
216	Overall Water Splitting: Cobalt Phosphides Nanocrystals Encapsulated by P-Doped Carbon and Married with P-Doped Graphene for Overall Water Splitting (Small 10/2019). Small, 2019, 15, 1970052.	10.0	4

#	Article	IF	CITATIONS
217	Partial Coordinationâ€Perturbed Biâ€Copper Sites for Selective Electroreduction of CO ₂ to Hydrocarbons. Angewandte Chemie, 2021, 133, 19982-19988.	2.0	4
218	Predesign of Catalytically Active Sites via Stable Coordination Cluster Model System for Electroreduction of CO2 to Ethylene. Angewandte Chemie, 0, , .	2.0	4
219	Uncovering the synergistic photocatalytic behavior of bimetallic molecular catalysts. Chinese Chemical Letters, 2023, 34, 107146.	9.0	4
220	A nanoscaled Au–horseradish peroxidase composite fabricated by an interface reaction and its characterization, immobilization and biosensing. Analytical Methods, 2015, 7, 3466-3471.	2.7	1
221	Carbon Dioxide Electroreduction: Efficient Electron Transfer from Electronâ€Sponge Polyoxometalate to Singleâ€Metal Site Metal–Organic Frameworks for Highly Selective Electroreduction of Carbon Dioxide (Small 20/2021). Small, 2021, 17, 2170095.	10.0	1
222	In Situ Synthesis of Surface-Mounted Novel Nickel(II) Trimer-Based MOF on Nickel Oxide Hydroxide Heterostructures for Enhanced Methanol Electro-Oxidation. Frontiers in Chemistry, 2021, 9, 780688.	3.6	1
223	Rücktitelbild: Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction (Angew. Chem. 42/2017). Angewandte Chemie, 2017, 129, 13332-13332.	2.0	0
224	Innentitelbild: Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal-Organic Framework System (Angew. Chem. 31/2018). Angewandte Chemie, 2018, 130, 9702-9702.	2.0	0
225	Frontispiece: Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO ₂ Photoreduction with H ₂ O. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
226	Frontispiz: Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO ₂ Photoreduction with H ₂ O. Angewandte Chemie, 2019, 131, .	2.0	0
227	Frontispiz: Adenine Components in Biomimetic Metal–Organic Frameworks for Efficient CO ₂ Photoconversion. Angewandte Chemie, 2019, 131,	2.0	0
228	Frontispiece: Adenine Components in Biomimetic Metal–Organic Frameworks for Efficient CO ₂ Photoconversion. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0