Gerhard Hobler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3420503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monte Carlo simulation of two-dimensional implanted dopant distributions at mask edges. Nuclear Instruments & Methods in Physics Research B, 1995, 96, 155-162.	0.6	117
2	Fundamentals of Focused Ion Beam Nanostructural Processing: Below, At, and Above the Surface. MRS Bulletin, 2007, 32, 424-432.	1.7	87
3	Large fraction of crystal directions leads to ion channeling. Physical Review B, 2016, 94, .	1.1	77
4	Status and open problems in modeling of as-implanted damage in silicon. Materials Science in Semiconductor Processing, 2003, 6, 1-14.	1.9	68
5	Full three-dimensional simulation of focused ion beam micro/nanofabrication. Nanotechnology, 2007, 18, 245303.	1.3	63
6	Critical angles and low-energy limits to ion channeling in silicon. Radiation Effects and Defects in Solids, 1996, 139, 21-85.	0.4	61
7	Round robin computer simulation of ion transmission through crystalline layers. Nuclear Instruments & Methods in Physics Research B, 1995, 102, 183-197.	0.6	60
8	Modeling of the ion mass effect on transient enhanced diffusion: Deviation from the "+1―model. Applied Physics Letters, 1998, 73, 1421-1423.	1.5	58
9	Current density profile extraction of focused ion beams based on atomic force microscopy contour profiling of nanodots. Journal of Applied Physics, 2002, 92, 4037-4042.	1.1	53
10	Two-dimensional modeling of ion implantation induced point defects. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1988, 7, 174-180.	1.9	50
11	On the useful range of application of molecular dynamics simulations in the recoil interaction approximation. Nuclear Instruments & Methods in Physics Research B, 2001, 180, 203-208.	0.6	48
12	Simulation of ion beam induced micro/nano fabrication. Journal of Micromechanics and Microengineering, 2007, 17, 1178-1183.	1.5	47
13	Boron channeling implantations in silicon: Modeling of electronic stopping and damage accumulation. Journal of Applied Physics, 1995, 77, 3697-3703.	1.1	46
14	Comparison of Transmission Electron Microscope Cross Sections of Amorphous Regions in Ion Implanted Silicon with Pointâ€Defect Density Calculations. Journal of the Electrochemical Society, 1992, 139, 3631-3638.	1.3	42
15	Monte Carlo simulations of defect recovery within a 10 keV collision cascade in 3C–SiC. Journal of Applied Physics, 2007, 102, .	1.1	41
16	Monte Carlo simulation of ion implantation into two- and three-dimensional structures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1989, 8, 450-459.	1.9	36
17	Two-dimensional modeling of ion implantation with spatial moments. Solid-State Electronics, 1987, 30, 445-455.	0.8	33
18	Computer Simulation of Oxygen Precipitation in Czochralskiâ€Grown Silicon during HI‣Oâ€HI Anneals. Journal of the Electrochemical Society, 1996, 143, 995-1001.	1.3	32

#	Article	IF	CITATIONS
19	A model for oxygen precipitation in silicon including bulk stacking fault growth. Journal of Applied Physics, 1995, 78, 6469-6476.	1.1	29
20	FIBSIM – dynamic Monte Carlo simulation of compositional and topography changes caused by focused ion beam milling. Nuclear Instruments & Methods in Physics Research B, 2001, 180, 125-129.	0.6	29
21	Level set approach for the simulation of focused ion beam processing on the micro/nano scale. Nanotechnology, 2007, 18, 265307.	1.3	24
22	Probing the limitations of Sigmund's model of spatially resolved sputtering using Monte Carlo simulations. Physical Review B, 2016, 93, .	1.1	24
23	Assessment of approximations for efficient topography simulation of ion beam processes: 10keV Ar on Si. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2987-2990.	0.6	23
24	Round robin computer simulation of ion transmission through crystalline layers. , 1995, 102, 183-183.		23
25	Simulation-based approach for the accurate fabrication of blazed grating structures by FIB. Optics Express, 2007, 15, 9444.	1.7	22
26	Defect characterization of low-energy recoil events in silicon using classical molecular dynamics simulation. Nuclear Instruments & Methods in Physics Research B, 2003, 202, 114-119.	0.6	21
27	Amorphous pocket model for silicon based on molecular dynamics simulations. Nuclear Instruments & Methods in Physics Research B, 2003, 206, 81-84.	0.6	21
28	Simulation of topography evolution and damage formation during TEM sample preparation using focused ion beams. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 102-107.	0.6	20
29	Determination of silicon point defect parameters and reaction barrier energies from gold diffusion experiments. Journal of Applied Physics, 1995, 77, 1320-1322.	1.1	19
30	Range of ion-implanted rare earth elements in Si and SiO2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 81, 83-85.	1.7	19
31	Dose, Energy, and Ion Species Dependence of the Effective Plus Factor for Transient Enhanced Diffusion. Journal of the Electrochemical Society, 2000, 147, 3494.	1.3	18
32	The significance of redeposition and backscattering in nanostructure formation by focused ion beams. Nuclear Instruments & Methods in Physics Research B, 2012, 282, 12-16.	0.6	18
33	Random and channeling stopping power of H in Si below 100keV. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 617-619.	0.6	16
34	Dynamic binary collision simulation of focused ion beam milling of deep trenches. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1609-1613.	0.6	16
35	Theoretical estimate of the low-energy limit to ion channeling. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 323-327.	0.6	14
36	Electronic Stopping of Channeled Ions in Silicon. Materials Research Society Symposia Proceedings, 1992, 279, 165.	0.1	13

#	Article	IF	CITATIONS
37	Model for the electronic stopping of channeled ions in silicon around the stopping power maximum. Nuclear Instruments & Methods in Physics Research B, 1995, 106, 47-50.	0.6	13
38	Method to characterize the three-dimensional distribution of focused ion beam induced damage in silicon after 50 keV Ga+ irradiation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1644-1648.	0.9	13
39	Range evaluation in SIMS depth profiles of Er-implantations in silicon. Applied Surface Science, 2005, 252, 271-277.	3.1	13
40	Sputtering of silicon at glancing incidence. Nuclear Instruments & Methods in Physics Research B, 2013, 303, 142-147.	0.6	13
41	Absence of a Crystal Direction Regime in which Sputtering Corresponds to Amorphous Material. Physical Review Letters, 2020, 125, 225502.	2.9	13
42	Verification of models for the simulation of boron implantation into crystalline silicon. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 272.	1.6	12
43	Modeling of {311} Defects. Materials Research Society Symposia Proceedings, 1999, 568, 123.	0.1	11
44	Modeling of electronic stopping and damage accumulation during arsenic implantation in silicon. Nuclear Instruments & Methods in Physics Research B, 1995, 100, 483-489.	0.6	10
45	Quantitative simulation of ion-beam induced deposition of nanostructures. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	10
46	Model-independent determination of 2D strain distribution in ion-implanted silicon crystals from x-ray diffraction data. Semiconductor Science and Technology, 1997, 12, 350-354.	1.0	9
47	Continuum treatment of spatial correlation in damage annealing. Nuclear Instruments & Methods in Physics Research B, 1999, 153, 172-176.	0.6	9
48	lon multibeam nanopatterning for photonic applications: Experiments and simulations, including study of precursor gas induced etching and deposition. Journal of Vacuum Science & Technology B, 2009, 27, 2668.	1.3	9
49	Crater function moments: Role of implanted noble gas atoms. Physical Review B, 2018, 97, .	1.1	9
50	Channeling of low-energy implanted ions through the poly-Si gate. IEEE Electron Device Letters, 1999, 20, 357-359.	2.2	8
51	Modeling of amorphous pocket formation in silicon by numerical solution of the heat transport equation. Nuclear Instruments & Methods in Physics Research B, 2005, 228, 226-229.	0.6	8
52	Inverse modeling of FIB milling by dose profile optimization. Nuclear Instruments & Methods in Physics Research B, 2014, 341, 77-83.	0.6	8
53	Sputtering of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Si</mml:mi> <mml: nanospheres. Physical Review B, 2018, 97, .</mml: </mml:msub></mml:mrow></mml:math 	ni> a₄ ∤mml	:mia
54	Dependence of ion channeling on relative atomic number in compounds. Nuclear Instruments & Methods in Physics Persoarch B, 2018, 435, 61-69	0.6	8

#	Article	IF	CITATIONS
55	AN EMPIRICAL MODEL FOR THE ELECTRONIC STOPPING OF BORON IN SILICON. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 1991, 10, 323-330.	0.5	7
56	Acceleration of binary collision simulations in crystalline targets using critical angles for ion channeling. Nuclear Instruments & Methods in Physics Research B, 1995, 102, 24-28.	0.6	7
57	Modeling of ultra-low energy boron implantation in silicon. , 0, , .		7
58	Ab initio calculations of the interaction between native point defects in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 368-371.	1.7	7
59	Multiscale approach for the analysis of channeling profile measurements of ion implantation damage. Nuclear Instruments & Methods in Physics Research B, 2005, 228, 360-363.	0.6	7
60	THE EFFECT OF A SCREENING OXIDE ON ION IMPLANTATION STUDIED BY MONTE CARLO SIMULATIONS. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 1992, 11, 403-411.	0.5	6
61	Modeling of precursor coverage in ion-beam induced etching and verification with experiments using XeF2 on SiO2. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 946-951.	0.6	6
62	Channeling maps for Si ions in Si: Assessing the binary collision approximation. Nuclear Instruments & Methods in Physics Research B, 2019, 449, 17-21.	0.6	6
63	Dependence of boron axial channelling in silicon on crystal orientation. Surface and Interface Analysis, 1992, 19, 369-373.	0.8	5
64	Verification of "lateral secondary ion mass spectrometry―as a method for measuring lateral dopant dose distributions in microelectronics test structures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 386.	1.6	5
65	Sputter-redeposition method for the fabrication of automatically sealed micro/nanochannel using FIBs. International Journal of Precision Engineering and Manufacturing, 2011, 12, 893-898.	1.1	5
66	Topography simulation of sputtering using an algorithm with second order approximation in space. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1614-1618.	0.6	5
67	Sputtering of silicon membranes with nanoscale thickness. Journal of Applied Physics, 2016, 119, .	1.1	5
68	Simple model of surface roughness for binary collision sputtering simulations. Nuclear Instruments & Methods in Physics Research B, 2017, 393, 17-21.	0.6	5
69	Initial Conditions for Transient Enhanced Diffusion: Beyond the Plus-Factor Approach. , 2001, , 34-37.		5
70	A study of ultra-shallow implanted dopant profiles in silicon using BC and MD simulations. Radiation Effects and Defects in Solids, 1997, 141, 113-125.	0.4	4
71	Hydrogen/Deuterium-defect complexes involved in the ion cutting of Si (001) at the sub-100nm scale. Physica B: Condensed Matter, 2006, 376-377, 36-40.	1.3	4
72	Boron implantation in Si: Channeling effects studied by SIMS and simulation. Mikrochimica Acta, 1992, 107, 161-169.	2.5	3

#	Article	IF	CITATIONS
73	Coupled BC/kLMC simulations of the temperature dependence of implant damage formation in silicon. Nuclear Instruments & Methods in Physics Research B, 2005, 228, 256-259.	0.6	3
74	Amorphous pockets in Si: Comparison of coupled molecular dynamics and TEM image contrast simulations with experimental results. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 105-109.	0.6	3
75	Assessment of surface potential models by molecular dynamics simulations of atom ejection from (100)-Si surfaces. Nuclear Instruments & Methods in Physics Research B, 2013, 303, 165-169.	0.6	3
76	Combined binary collision and continuum mechanics model applied to focused ion beam milling of a silicon membrane. Nuclear Instruments & Methods in Physics Research B, 2015, 352, 22-26.	0.6	3
77	Simulation Study of Al Channeling in 4H-SiC. , 2018, , .		3
78	Ion bombardment induced atom redistribution in amorphous targets: MD versus BCA. Nuclear Instruments & Methods in Physics Research B, 2019, 447, 30-33.	0.6	3
79	Second order corrections to the sputter yield of a curved surface. Journal of Applied Physics, 2021, 129, .	1.1	3
80	Simulation of two-dimensional implantation profiles with a large concentration range in crystalline silicon using an advanced Monte Carlo method. , 0, , .		2
81	Use of transient enhanced diffusion to tailor boron out-diffusion. IEEE Transactions on Electron Devices, 2000, 47, 1401-1405.	1.6	2
82	Investigation of the impact of defect models on Monte Carlo simulations of RBS/C spectra. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 776-779.	0.6	2
83	Amorphous pocket model based on the modified heat transport equation and local lattice collapse. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 1229-1231.	0.6	2
84	Channeled MeV B, P and As Profiles in Si(100): Monte-Carlo Models and SIMS. , 2018, , .		2
85	Aspects of Highly-channeled MeV Implants of Dopants in Si(100). , 2019, , .		2
86	Calculation of internal gettering sites after double-step and CMOS-type thermal anneals. Microelectronic Engineering, 1991, 15, 57-60.	1.1	1
87	Comparison of Damage Accumulation Models for Boron Implantation in Silicon. Materials Research Society Symposia Proceedings, 1995, 389, 221.	0.1	1
88	Simulation of Focused Ion Beam Induced Damage Formation in Crystalline Silicon. Materials Research Society Symposia Proceedings, 2003, 792, 68.	0.1	1
89	Dose-rate dependence of damage formation in Si by N implantation as determined from channeling profile measurements. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 667-669.	0.6	1
90	Simulation of Ion-beam Induced Etching and Deposition Using a Non-local Recoil-based Algorithm. Materials Research Society Symposia Proceedings, 2009, 1181, 42.	0.1	1

#	Article	IF	CITATIONS
91	Monte Carlo Simulation of Multiple-Species Ion Implantation and its Application to the Modeling of 0.1µ PMOS Devices. , 1995, , 484-487.		1
92	Simple Formulae for the Effective Plus-Factor for Transient Enhanced Diffusion. , 2000, , .		0
93	Coupled Kinetic Monte Carlo and Molecular Dynamics Simulations of Implant Damage Accumulation in Silicon. Materials Research Society Symposia Proceedings, 2003, 792, 434.	0.1	о
94	Is there an influence of ion-beam-induced interfacial amorphization on the a/c-interface depth in silicon at common implantation energies?. Nuclear Instruments & Methods in Physics Research B, 2006, 253, 227-231.	0.6	0
95	A Kinetic Model for Precipitation of Oxygen in Silicon. , 1996, , 447-454.		Ο
96	Model for the electronic stopping of channeled ions in silicon around the stopping power maximum. , 1996, , 47-50.		0
97	Ion Beam Devices for Material Processing andÂAnalysis. , 2008, , 231-263.		Ο