Zheng-Hua Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/342049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Battery of Transcription Factors Involved in the Regulation of Secondary Cell Wall Biosynthesis in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 2763-2782.	3.1	866
2	MYB58 and MYB63 Are Transcriptional Activators of the Lignin Biosynthetic Pathway during Secondary Cell Wall Formation in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 248-266.	3.1	737
3	SND1, a NAC Domain Transcription Factor, Is a Key Regulator of Secondary Wall Synthesis in Fibers of Arabidopsis. Plant Cell, 2006, 18, 3158-3170.	3.1	655
4	The MYB46 Transcription Factor Is a Direct Target of SND1 and Regulates Secondary Wall Biosynthesis in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 2776-2792.	3.1	576
5	MYB83 Is a Direct Target of SND1 and Acts Redundantly with MYB46 in the Regulation of Secondary Cell Wall Biosynthesis in Arabidopsis. Plant and Cell Physiology, 2009, 50, 1950-1964.	1.5	471
6	Arabidopsis irregular xylem8 and irregular xylem9: Implications for the Complexity of Glucuronoxylan Biosynthesis. Plant Cell, 2007, 19, 549-563.	3.1	396
7	Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta, 2007, 225, 1603-1611.	1.6	373
8	Secondary Cell Walls: Biosynthesis, Patterned Deposition and Transcriptional Regulation. Plant and Cell Physiology, 2015, 56, 195-214.	1.5	360
9	A Katanin-like Protein Regulates Normal Cell Wall gBiosynthesis and Cell Elongation. Plant Cell, 2001, 13, 807-827.	3.1	330
10	MYB46 and MYB83 Bind to the SMRE Sites and Directly Activate a Suite of Transcription Factors and Secondary Wall Biosynthetic Genes. Plant and Cell Physiology, 2012, 53, 368-380.	1.5	325
11	Global Analysis of Direct Targets of Secondary Wall NAC Master Switches in Arabidopsis. Molecular Plant, 2010, 3, 1087-1103.	3.9	323
12	Arabidopsis Fragile Fiber8, Which Encodes a Putative Glucuronyltransferase, Is Essential for Normal Secondary Wall Synthesis. Plant Cell, 2005, 17, 3390-3408.	3.1	301
13	Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends in Plant Science, 2010, 15, 625-632.	4.3	288
14	IFL1, a Gene Regulating Interfascicular Fiber Differentiation in Arabidopsis, Encodes a Homeodomain-Leucine Zipper Protein. Plant Cell, 1999, 11, 2139-2152.	3.1	271
15	Transcriptional Activation of Secondary Wall Biosynthesis by Rice and Maize NAC and MYB Transcription Factors. Plant and Cell Physiology, 2011, 52, 1856-1871.	1.5	270
16	VASCULARTISSUEDIFFERENTIATION ANDPATTERNFORMATION INPLANTS. Annual Review of Plant Biology, 2002, 53, 183-202.	8.6	268
17	Alteration of Oriented Deposition of Cellulose Microfibrils by Mutation of a Katanin-Like Microtubule-Severing Protein. Plant Cell, 2002, 14, 2145-2160.	3.1	248
18	Functional Characterization of Poplar Wood-Associated NAC Domain Transcription Factors. Plant Physiology, 2010, 152, 1044-1055.	2.3	245

#	Article	IF	CITATIONS
19	Essential Role of Caffeoyl Coenzyme A O-Methyltransferase in Lignin Biosynthesis in Woody Poplar Plants. Plant Physiology, 2000, 124, 563-578.	2.3	240
20	Dual Methylation Pathways in Lignin Biosynthesis. Plant Cell, 1998, 10, 2033-2045.	3.1	239
21	Dissection of the Transcriptional Program Regulating Secondary Wall Biosynthesis during Wood Formation in Poplar Â. Plant Physiology, 2011, 157, 1452-1468.	2.3	220
22	Transcriptional regulation of lignin biosynthesis. Plant Signaling and Behavior, 2009, 4, 1028-1034.	1.2	215
23	The Poplar MYB Transcription Factors, PtrMYB3 and PtrMYB20, are Involved in the Regulation of Secondary Wall Biosynthesis. Plant and Cell Physiology, 2010, 51, 1084-1090.	1.5	199
24	amphivasal vascular bundle 1, a Gain-of-Function Mutation of the IFL1/REV Gene, Is Associated with Alterations in the Polarity of Leaves, Stems and Carpels. Plant and Cell Physiology, 2004, 45, 369-385.	1.5	186
25	Secondary cell wall biosynthesis. New Phytologist, 2019, 221, 1703-1723.	3.5	185
26	Arabidopsis NAC Domain Proteins, VND1 to VND5, Are Transcriptional Regulators of Secondary Wall Biosynthesis in Vessels. PLoS ONE, 2014, 9, e105726.	1.1	169
27	The PARVUS Gene is Expressed in Cells Undergoing Secondary Wall Thickening and is Essential for Glucuronoxylan Biosynthesis. Plant and Cell Physiology, 2007, 48, 1659-1672.	1.5	161
28	Molecular control of wood formation in trees. Journal of Experimental Botany, 2015, 66, 4119-4131.	2.4	148
29	The irregular xylem9 Mutant is Deficient in Xylan Xylosyltransferase Activity. Plant and Cell Physiology, 2007, 48, 1624-1634.	1.5	147
30	Alteration of Auxin Polar Transport in the Arabidopsisifl1 Mutants. Plant Physiology, 2001, 126, 549-563.	2.3	146
31	The Four Arabidopsis REDUCED WALL ACETYLATION Genes are Expressed in Secondary Wall-Containing Cells and Required for the Acetylation of Xylan. Plant and Cell Physiology, 2011, 52, 1289-1301.	1.5	132
32	The Poplar MYB Master Switches Bind to the SMRE Site and Activate the Secondary Wall Biosynthetic Program during Wood Formation. PLoS ONE, 2013, 8, e69219.	1.1	130
33	The Arabidopsis DUF231 Domain-Containing Protein ESK1 Mediates 2-O- and 3-O-Acetylation of Xylosyl Residues in Xylan. Plant and Cell Physiology, 2013, 54, 1186-1199.	1.5	129
34	Expression of a Mutant Form of Cellulose Synthase AtCesA7 Causes Dominant Negative Effect on Cellulose Biosynthesis. Plant Physiology, 2003, 132, 786-795.	2.3	128
35	Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Science, 2014, 229, 193-207.	1.7	124
36	Down-Regulation of PoGT47C Expression in Poplar Results in a Reduced Glucuronoxylan Content and an Increased Wood Digestibility by Cellulase. Plant and Cell Physiology, 2009, 50, 1075-1089.	1.5	111

#	Article	IF	CITATIONS
37	The Arabidopsis Family GT43 Glycosyltransferases Form Two Functionally Nonredundant Groups Essential for the Elongation of Glucuronoxylan Backbone Â. Plant Physiology, 2010, 153, 526-541.	2.3	99
38	The F8H Glycosyltransferase is a Functional Paralog of FRA8 Involved in Glucuronoxylan Biosynthesis in Arabidopsis. Plant and Cell Physiology, 2009, 50, 812-827.	1.5	98
39	Arabidopsis GUX Proteins Are Glucuronyltransferases Responsible for the Addition of Glucuronic Acid Side Chains onto Xylan. Plant and Cell Physiology, 2012, 53, 1204-1216.	1.5	97
40	Ectopic Deposition of Lignin in the Pith of Stems of Two Arabidopsis Mutants. Plant Physiology, 2000, 123, 59-70.	2.3	94
41	Three Arabidopsis DUF579 Domain-Containing GXM Proteins are Methyltransferases Catalyzing 4-O-Methylation of Glucuronic Acid on Xylan. Plant and Cell Physiology, 2012, 53, 1934-1949.	1.5	84
42	Kinesin-4 Functions in Vesicular Transport on Cortical Microtubules and Regulates Cell Wall Mechanics during Cell Elongation in Plants. Molecular Plant, 2015, 8, 1011-1023.	3.9	83
43	Molecular Dissection of Xylan Biosynthesis during Wood Formation in Poplar. Molecular Plant, 2011, 4, 730-747.	3.9	81
44	Arabidopsis Family GT43 Members are Xylan Xylosyltransferases Required for the Elongation of the Xylan Backbone. Plant and Cell Physiology, 2012, 53, 135-143.	1.5	76
45	Mutations of Arabidopsis TBL32 and TBL33 Affect Xylan Acetylation and Secondary Wall Deposition. PLoS ONE, 2016, 11, e0146460.	1.1	76
46	Functional Characterization of NAC and MYB Transcription Factors Involved in Regulation of Biomass Production in Switchgrass (Panicum virgatum). PLoS ONE, 2015, 10, e0134611.	1.1	68
47	Transformation of the Collateral Vascular Bundles into Amphivasal Vascular Bundles in an Arabidopsis Mutant1. Plant Physiology, 1999, 120, 53-64.	2.3	59
48	Roles of Arabidopsis TBL34 and TBL35 in xylan acetylation and plant growth. Plant Science, 2016, 243, 120-130.	1.7	59
49	Regiospecific Acetylation of Xylan is Mediated by a Group of DUF231-Containing O-Acetyltransferases. Plant and Cell Physiology, 2017, 58, 2126-2138.	1.5	58
50	Vascular development in Arabidopsis. International Review of Cytology, 2002, 220, 225-256.	6.2	54
51	Functional roles of rice glycosyltransferase family GT43 in xylan biosynthesis. Plant Signaling and Behavior, 2014, 9, e27809.	1.2	54
52	The <i>Arabidopsis</i> NAC transcription factor NST2 functions together with SND1 and NST1 to regulate secondary wall biosynthesis in fibers of inflorescence stems. Plant Signaling and Behavior, 2015, 10, e989746.	1.2	53
53	Fibers. A Model for Studying Cell Differentiation, Cell Elongation, and Cell Wall Biosynthesis. Plant Physiology, 2001, 126, 477-479.	2.3	48
54	The poplar PtrWNDs are transcriptional activators of secondary cell wall biosynthesis. Plant Signaling and Behavior, 2010, 5, 469-472.	1.2	48

#	Article	IF	CITATIONS
55	Disruption of Cortical Microtubules by Overexpression of Green Fluorescent Protein-Tagged alpha-Tubulin 6 Causes a Marked Reduction in Cell Wall Synthesis. Journal of Integrative Plant Biology, 2006, 48, 85-98.	4.1	47
56	TBL3 and TBL31, Two Arabidopsis DUF231 Domain Proteins, are Required for 3- <i>O</i> -Monoacetylation of Xylan. Plant and Cell Physiology, 2016, 57, 35-45.	1.5	47
57	A Novel Rice Xylosyltransferase Catalyzes the Addition of 2-O-Xylosyl Side Chains onto the Xylan Backbone. Plant and Cell Physiology, 2018, 59, 554-565.	1.5	40
58	The Poplar GT8E and GT8F Glycosyltransferases are Functional Orthologs of Arabidopsis PARVUS Involved in Glucuronoxylan Biosynthesis. Plant and Cell Physiology, 2009, 50, 1982-1987.	1.5	37
59	Modification of the degree of 4-O-methylation of secondary wall glucuronoxylan. Plant Science, 2014, 219-220, 42-50.	1.7	28
60	Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains. Planta, 2018, 248, 1159-1171.	1.6	26
61	Evolutionary origin of <i>O</i> â€ecetyltransferases responsible for glucomannan acetylation in land plants. New Phytologist, 2019, 224, 466-479.	3.5	26
62	Cytosol-Localized UDP-Xylose Synthases Provide the Major Source of UDP-Xylose for the Biosynthesis of Xylan and Xyloglucan. Plant and Cell Physiology, 2017, 58, pcw179.	1.5	25
63	Xylem vesselâ€specific SND5 and its homologs regulate secondary wall biosynthesis through activating secondary wall NAC binding elements. New Phytologist, 2021, 231, 1496-1509.	3.5	24
64	Biochemical characterization of xylan xylosyltransferases involved in wood formation in poplar. Plant Signaling and Behavior, 2012, 7, 332-337.	1.2	23
65	Important new players in secondary wall synthesis. Trends in Plant Science, 2006, 11, 162-164.	4.3	21
66	A group of Populus trichocarpa DUF231 proteins exhibit differential O-acetyltransferase activities toward xylan. PLoS ONE, 2018, 13, e0194532.	1.1	21
67	XND1 Regulates Secondary Wall Deposition in Xylem Vessels through the Inhibition of VND Functions. Plant and Cell Physiology, 2021, 62, 53-65.	1.5	20
68	Biochemical characterization of rice xylan O-acetyltransferases. Planta, 2018, 247, 1489-1498.	1.6	19
69	ldentification of a disaccharide side chain 2-‹i›O‹/i›-α-D-galactopyranosyl-α-D-glucuronic acid in‹i›Arabidopsis‹/i›xylan. Plant Signaling and Behavior, 2014, 9, e27933.	1.2	18
70	Alteration in Secondary Wall Deposition by Overexpression of the Fragile Fiber1 Kinesin‣ike Protein in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2007, 49, 1235-1243.	4.1	17
71	Identification and Biochemical Characterization of Four Wood-Associated Glucuronoxylan Methyltransferases in Populus. PLoS ONE, 2014, 9, e87370.	1.1	17
72	Alterations of the degree of xylan acetylation in <i>Arabidopsis</i> xylan mutants. Plant Signaling and Behavior, 2014, 9, e27797.	1.2	17

#	Article	IF	CITATIONS
73	Evolutionary Conservation of Xylan Biosynthetic Genes in <i>Selaginella moellendorffii</i> and <i>Physcomitrella patens</i> . Plant and Cell Physiology, 2016, 57, 1707-1719.	1.5	16
74	Members of the DUF231 Family are O-Acetyltransferases Catalyzing 2-O- and 3-O-Acetylation of Mannan. Plant and Cell Physiology, 2018, 59, 2339-2349.	1.5	14
75	A Group of O-Acetyltransferases Catalyze Xyloglucan Backbone Acetylation and Can Alter Xyloglucan Xylosylation Pattern and Plant Growth When Expressed in Arabidopsis. Plant and Cell Physiology, 2020, 61, 1064-1079.	1.5	14
76	Cytosolic Acetyl-CoA Generated by ATP-Citrate Lyase Is Essential for Acetylation of Cell Wall Polysaccharides. Plant and Cell Physiology, 2020, 61, 64-75.	1.5	11
77	Cell wall biology of the moss <i>Physcomitrium patens</i> . Journal of Experimental Botany, 2022, 73, 4440-4453.	2.4	10
78	A Single Xyloglucan Xylosyltransferase Is Sufficient for Generation of the XXXG Xylosylation Pattern of Xyloglucan. Plant and Cell Physiology, 2021, 62, 1589-1602.	1.5	8
79	Functional analysis of GT61 glycosyltransferases from grass species in xylan substitutions. Planta, 2021, 254, 131.	1.6	7