Rodrigo Bini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3419565/publications.pdf

Version: 2024-02-01

		623188	610482
54	707	14	24
papers	citations	h-index	g-index
55	55	55	529
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of Bicycle Saddle Height on Knee Injury Risk and Cycling Performance. Sports Medicine, 2011, 41, 463-476.	3.1	103
2	Fatigue effects on the coordinative pattern during cycling: Kinetics and kinematics evaluation. Journal of Electromyography and Kinesiology, 2010, 20, 102-107.	0.7	76
3	Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes. European Journal of Sport Science, 2014, 14, 44-52.	1.4	52
4	Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. European Journal of Applied Physiology, 2018, 118, 1725-1736.	1.2	49
5	Pedaling cadence effects on joint mechanical work during cycling. Isokinetics and Exercise Science, 2010, 18, 7-13.	0.2	29
6	Cyclists and triathletes have different body positions on the bicycle. European Journal of Sport Science, 2014, 14, S109-15.	1.4	27
7	Joint kinematics assessment during cycling incremental test to exhaustion. Isokinetics and Exercise Science, 2012, 20, 99-105.	0.2	26
8	Effects of moving forward or backward on the saddle on knee joint forces during cycling. Physical Therapy in Sport, 2013, 14, 23-27.	0.8	23
9	Effects of body positions on the saddle on pedalling technique for cyclists and triathletes. European Journal of Sport Science, 2014, 14, S413-20.	1.4	22
10	Potential factors associated with knee pain in cyclists: a systematic review. Open Access Journal of Sports Medicine, 2018, Volume 9, 99-106.	0.6	21
11	Triceps Surae Muscle Architecture Adaptations to Eccentric Training. Frontiers in Physiology, 2019, 10, 1456.	1.3	20
12	A comparison of cycling SRM crank and strain gauge instrumented pedal measures of peak torque, crank angle at peak torque and power output. Procedia Engineering, 2011, 13, 56-61.	1,2	19
13	Does saddle height affect patellofemoral and tibiofemoral forces during bicycling for rehabilitation?. Journal of Bodywork and Movement Therapies, 2011, 15, 186-191.	0.5	19
14	Effects of saddle height on pedal force effectiveness. Procedia Engineering, 2011, 13, 51-55.	1.2	18
15	Muscle activity and pedal force profile of triathletes during cycling to exhaustion. Sports Biomechanics, 2012, 11, 10-19.	0.8	15
16	A Comparison of Static and Dynamic Measures of Lower Limb Joint Angles in Cycling: Application to Bicycle Fitting. Human Movement, 2016, 17 , .	0.5	13
17	Effects of fatigue on ankle biomechanics during jumps: A systematic review. Journal of Electromyography and Kinesiology, 2018, 42, 81-91.	0.7	13
18	Changes in body position on the bike during seated sprint cycling: Applications to bike fitting. European Journal of Sport Science, 2020, 20, 35-42.	1.4	13

#	Article	IF	CITATIONS
19	Time course of neuromechanical and morphological adaptations to triceps surae isokinetic eccentric training. Physical Therapy in Sport, 2018, 34, 84-91.	0.8	12
20	Biomechanical and physiological responses to electrically assisted cycling during simulated mail delivery. Applied Ergonomics, 2019, 75, 243-249.	1.7	11
21	Proposta metodol $ ilde{A}^3$ gica para a avalia $ ilde{A}$ § $ ilde{A}$ £o da t $ ilde{A}$ ©cnica da pedalada de ciclistas: estudo de caso. Revista Brasileira De Medicina Do Esporte, 2008, 14, 155-158.	0.1	10
22	Muscle force adaptation to changes in upper body position during seated sprint cycling. Journal of Sports Sciences, 2019, 37, 2270-2278.	1.0	9
23	Caffeine mouth rinse enhances performance, fatigue tolerance and reduces muscle activity during moderate-intensity cycling. Biology of Sport, 2021, 38, 517-523.	1.7	9
24	Neuromuscular fatigue is weakly associated with perception of fatigue and function in patients with rheumatoid arthritis. Rheumatology International, 2018, 38, 415-423.	1.5	8
25	Acute effects from changes in saddle height in perceived comfort during cycling. International Journal of Sports Science and Coaching, 2020, 15, 390-397.	0.7	8
26	Influence of saddle height in 3D knee loads commuter cyclists: A statistical parametric mapping analysis. Journal of Sports Sciences, 2021, 39, 275-288.	1.0	8
27	Sistemas de pedivela n $ ilde{A}$ £o-circulares e interfaces pedal-pedivela no ciclismo: uma revis $ ilde{A}$ £o da literatura Revista Brasileira De Cineantropometria E Desempenho Humano, 2012, 14, .	0.5	6
28	Methods to determine saddle height in cycling and implications of changes in saddle height in performance and injury risk: A systematic review. Journal of Sports Sciences, 2022, 40, 386-400.	1.0	6
29	Between-day reliability of pedal forces for cyclists during an incremental cycling test to exhaustion. Isokinetics and Exercise Science, 2013, 21, 203-209.	0.2	5
30	Motor unit firing frequency of lower limb muscles during an incremental slide board skating test. Sports Biomechanics, 2017, 16, 540-551.	0.8	5
31	Effects of exercise mode in knee cartilage thickness. Journal of Bodywork and Movement Therapies, 2020, 24, 490-495.	0.5	5
32	Validity of different EMG analysis methods to identify aerobic and anaerobic thresholds in speed skaters. Journal of Electromyography and Kinesiology, 2020, 52, 102425.	0.7	5
33	Running after cycling induces inter-limb differences in muscle activation but not in kinetics or kinematics. Journal of Sports Sciences, 2021, 39, 154-160.	1.0	5
34	Effects from loaded walking with polyurethane and styrene-butadiene rubber midsole military boots on kinematics and external forces: A statistical parametric mapping analysis. Applied Ergonomics, 2021, 94, 103429.	1.7	5
35	AtivaçÃ \pounds o muscular durante a pedalada em diferentes posiçÃ μ es do selim. Revista Brasileira De Cineantropometria E Desempenho Humano, 2008, 10, .	0.5	4
36	Análise da ativação muscular durante a pedalada até a exaustão utilizando bandas de frequência. Revista Brasileira De Cineantropometria E Desempenho Humano, 2012, 14, .	0.5	4

#	Article	IF	CITATIONS
37	Estimativa das forças na articulação tÃbio-femoral no exercÃcio de extensão dos joelhos em cadeia cinética aberta realizado em máquina de musculação. Revista Brasileira De Cineantropometria E Desempenho Humano, 2008, 10, 35.	0.5	4
38	Reproducibility of upper leg EMG frequency content during cycling. Journal of Sports Sciences, 2018, 36, 485-491.	1.0	3
39	Reproducibility of lower limb motion and forces during stationary submaximal pedalling using wearable motion tracking sensors. Sports Biomechanics, 2020, , 1-22.	0.8	3
40	Validity of Neural Networks to Determine Body Position on the Bicycle. Research Quarterly for Exercise and Sport, 2023, 94, 905-912.	0.8	3
41	Patellofemoral and tibiofemoral forces during knee extension: simulations to strength training and rehabilitation exercises. Fisioterapia Em Movimento, 2017, 30, 267-275.	0.4	2
42	Within- and between-session reliability of a pedal force system for power output and pedal force effectiveness measurements. Human Movement, 2020, 21, 69-78.	0.5	2
43	Quantification of the demands of cricket bowling and the relationship to injury risk: a systematic review. BMC Sports Science, Medicine and Rehabilitation, 2021, 13, 109.	0.7	2
44	Sensitivity of cycling Motion Performance Indicators (MPIs) to incremented load and their relationship with performance in professional cyclists. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2024, 238, 76-82.	0.4	2
45	Implicações da cadência de pedalada sobre a potência mecânica e o perÃodo de contração muscular no ciclismo. Revista Brasileira De Educação FÃsica E Esporte: RBEFE, 2014, 28, 387-394.	0.1	1
46	Physiological and biomechanical comparison between electrically assisted bicycles and motorbikes during simulated mail delivery. Ergonomics, 2020, 63, 123-132.	1,1	1
47	Análise da técnica de pedalada durante o ciclismo até a exaustão. Motriz Revista De Educacao Fisica, 2012, 18, 476-486.	0.3	1
48	Efeitos da posição dos joelhos no plano frontal sobre as forças aplicadas no ciclismo: estudo preliminar. Revista Brasileira De Cineantropometria E Desempenho Humano, 2011, 11, .	0.5	0
49	Influência da pedalada com os joelhos tangenciando o quadro da bicicleta sobre a ativação dos músculos do membro inferior. Revista Brasileira De Educação FÃsica E Esporte: RBEFE, 2011, 25, 27-37.	0.1	0
50	Changes in muscular activation patterns produced by a toning shoe during treadmill walking and quiet standing. Footwear Science, 2015, 7, 43-50.	0.8	0
51	Lower limb muscle and joint forces during front and back squats performed on a Smith machine. Isokinetics and Exercise Science, 2021, 29, 163-173.	0.2	O
52	Comparison of linea alba length and core-muscles engagement during core and lower back orientated exercises. Journal of Bodywork and Movement Therapies, 2021, 28, 131-137.	0.5	0
53	Atividade muscular acessória da respiração após programa de reeducação respiratória e natação em asmáticos. Revista Portuguesa De Ciências Do Desporto, 2016, 16, 20-32.	0.0	O
54	Effects of an intermittent exercise protocol on ankle control during a single-legged landing. Sport Sciences for Health, 0, , .	0.4	0