Zhengzhong Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3419469/publications.pdf

Version: 2024-02-01

687363 677142 23 679 13 22 g-index citations h-index papers 23 23 23 972 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Designing Multi-Stage 2 A/O-MBR Processes for a Higher Removal Rate of Pollution in Wastewater. Membranes, 2022, 12, 377.	3.0	3
2	Effects of organic loading rates on the anaerobic co-digestion of fresh vinegar residue and pig manure: Focus on the performance and microbial communities. Biochemical Engineering Journal, 2022, 183, 108441.	3.6	12
3	Effect of the Organic Loading Rates Increase on Process Stability and Microbial Community Composition during the Anaerobic Digestion of Fresh Vinegar Residue. Waste and Biomass Valorization, 2021, 12, 5505-5516.	3.4	3
4	Insight into Tar Formation Mechanism during Catalytic Pyrolysis of Biomass over Waste Aluminum Dross. Applied Sciences (Switzerland), 2021, 11, 246.	2.5	1
5	Carbon quantum dots (CQDs) nanofiltration membranes towards efficient biogas slurry valorization. Chemical Engineering Journal, 2020, 385, 123993.	12.7	65
6	The investigation of the reversed enantio-selectivity by an alpha-cyclodextrin doped thin film composite membrane. Chemical Engineering Research and Design, 2020, 160, 437-446.	5.6	11
7	Gas fuel production derived from pine sawdust pyrolysis catalyzed on alumina. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2456.	1.5	6
8	Effect of carbon structure on hydrogen release derived from different biomass pyrolysis. Fuel, 2020, 271, 117638.	6.4	32
9	The valorization of biogas slurry with a pilot dual stage reverse osmosis membrane process. Chemical Engineering Research and Design, 2019, 142, 133-142.	5.6	25
10	Fabricating carbon quantum dots doped ZnIn 2 S 4 nanoflower composites with broad spectrum and enhanced photocatalytic Tetracycline hydrochloride degradation. Materials Research Bulletin, 2018, 97, 158-168.	5.2	58
11	Construction of stable Ta 3 N 5 /g-C 3 N 4 metal/non-metal nitride hybrids with enhanced visible-light photocatalysis. Applied Surface Science, 2017, 391, 392-403.	6.1	72
12	Dualâ€Functional Coating of Forward Osmosis Membranes for Hydrophilization and Antimicrobial Resistance. Advanced Materials Interfaces, 2016, 3, 1500599.	3.7	15
13	Hydrophilic Mineral Coating of Membrane Substrate for Reducing Internal Concentration Polarization (ICP) in Forward Osmosis. Scientific Reports, 2016, 6, 19593.	3.3	77
14	An Effective Design of Electrically Conducting Thin-Film Composite (TFC) Membranes for Bio and Organic Fouling Control in Forward Osmosis (FO). Environmental Science & Echnology, 2016, 50, 10596-10605.	10.0	50
15	Experiments and Modeling of Boric Acid Permeation through Double-Skinned Forward Osmosis Membranes. Environmental Science & En	10.0	19
16	Evaluating the viability of double-skin thin film composite membranes in forward osmosis processes. Journal of Membrane Science, 2016, 502, 65-75.	8.2	13
17	Surface Reaction Route To Increase the Loading of Antimicrobial Ag Nanoparticles in Forward Osmosis Membranes. ACS Sustainable Chemistry and Engineering, 2015, 3, 2959-2966.	6.7	34
18	Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction. Chemical Engineering Journal, 2014, 249, 236-245.	12.7	112

#	Article	IF	CITATIONS
19	The exploration of the reversed enantioselectivity of a chitosan functionalized cellulose acetate membranes in an electric field driven process. Journal of Membrane Science, 2012, 389, 372-379.	8.2	22
20	Enantiomeric resolution of tryptophan via stereoselective binding in an ion-exchange membrane partitioned free flow isoelectric focusing system. Chemical Engineering Journal, 2011, 174, 522-529.	12.7	9
21	Novel membrane processes for the enantiomeric resolution of tryptophan by selective permeation enhancements. AICHE Journal, 2011, 57, 1154-1162.	3.6	10
22	Effects of spacer arm length and benzoation on enantioseparation performance of \hat{l}^2 -cyclodextrin functionalized cellulose membranes. Journal of Membrane Science, 2009, 339, 21-27.	8.2	24
23	Energy Consumption of Nanofiltration Diafiltration Process: Identifying the Optimal Conditions of Continuous and Intermittent Feed Diafiltration. Industrial & Engineering Chemistry Research, 0, , .	3.7	6