Lisa A Lesniewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3419276/publications.pdf

Version: 2024-02-01

88 papers 3,704 citations

30 h-index 58 g-index

89 all docs 89 docs citations

89 times ranked

5147 citing authors

#	Article	IF	CITATIONS
1	Cellular and molecular biology of aging endothelial cells. Journal of Molecular and Cellular Cardiology, 2015, 89, 122-135.	1.9	367
2	Mechanisms of Dysfunction in the Aging Vasculature and Role in Age-Related Disease. Circulation Research, 2018, 123, 825-848.	4.5	344
3	Nuclear Factor-κB Activation Contributes to Vascular Endothelial Dysfunction via Oxidative Stress in Overweight/Obese Middle-Aged and Older Humans. Circulation, 2009, 119, 1284-1292.	1.6	220
4	SIRTâ€1 and vascular endothelial dysfunction with ageing in mice and humans. Journal of Physiology, 2011, 589, 4545-4554.	2.9	211
5	Voluntary wheel running restores endothelial function in conduit arteries of old mice: direct evidence for reduced oxidative stress, increased superoxide dismutase activity and downâ€regulation of NADPH oxidase. Journal of Physiology, 2009, 587, 3271-3285.	2.9	196
6	Arterial stiffening with ageing is associated with transforming growth factor-121-related changes in adventitial collagen: reversal by aerobic exercise. Journal of Physiology, 2010, 588, 3971-3982.	2.9	169
7	Strategy for Identifying Repurposed Drugs for the Treatment of Cerebral Cavernous Malformation. Circulation, 2015, 131, 289-299.	1.6	149
8	Life-long caloric restriction reduces oxidative stress and preserves nitric oxide bioavailability and function in arteries of old mice. Aging Cell, 2013, 12, 772-783.	6.7	146
9	Habitual exercise and vascular ageing. Journal of Physiology, 2009, 587, 5541-5549.	2.9	137
10	Shortâ€ŧerm calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging Cell, 2010, 9, 304-312.	6.7	131
11	Dietary rapamycin supplementation reverses ageâ€related vascular dysfunction and oxidative stress, while modulating nutrientâ€sensing, cell cycle, and senescence pathways. Aging Cell, 2017, 16, 17-26.	6.7	123
12	Bone marrow–specific Cap gene deletion protects against high-fat diet–induced insulin resistance. Nature Medicine, 2007, 13, 455-462.	30.7	110
13	Effects of aging on vasoconstrictor and mechanical properties of rat skeletal muscle arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1843-H1854.	3.2	106
14	Aerobic exercise reverses arterial inflammation with aging in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1025-H1032.	3.2	103
15	Ageing and exercise training alter adrenergic vasomotor responses of rat skeletal muscle arterioles. Journal of Physiology, 2007, 579, 115-125.	2.9	75
16	B6D2F1 Mice Are a Suitable Model of Oxidative Stress-Mediated Impaired Endothelium-Dependent Dilation With Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 9-20.	3.6	71
17	The effects of aging and exercise training on endothelin-1 vasoconstrictor responses in rat skeletal muscle arterioles. Cardiovascular Research, 2005, 66, 393-401.	3.8	69
18	Life-long caloric restriction elicits pronounced protection of the aged myocardium: A role for AMPK. Mechanisms of Ageing and Development, 2010, 131, 739-742.	4.6	67

#	Article	IF	Citations
19	Dietary Vitamin D and Its Metabolites Non-Genomically Stabilize the Endothelium. PLoS ONE, 2015, 10, e0140370.	2.5	63
20	Salicylate Treatment Improves Age-Associated Vascular Endothelial Dysfunction: Potential Role of Nuclear Factor ÂB and Forkhead Box O Phosphorylation. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 409-418.	3.6	59
21	Role of NFκB in age-related vascular endothelial dysfunction in humans. Aging, 2009, 1, 678-680.	3.1	59
22	Decreased NO signaling leads to enhanced vasoconstrictor responsiveness in skeletal muscle arterioles of the ZDF rat prior to overt diabetes and hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1840-H1850.	3.2	57
23	The impact of ageing on adipose structure, function and vasculature in the B6D2F1 mouse: evidence of significant multisystem dysfunction. Journal of Physiology, 2014, 592, 4083-4096.	2.9	54
24	Sustained activation of AMPK ameliorates age-associated vascular endothelial dysfunction via a nitric oxide-independent mechanism. Mechanisms of Ageing and Development, 2012, 133, 368-371.	4.6	51
25	TNF-α impairs endothelial function in adipose tissue resistance arteries of mice with diet-induced obesity. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H672-H679.	3.2	46
26	Aging compounds western diet-associated large artery endothelial dysfunction in mice: Prevention by voluntary aerobic exercise. Experimental Gerontology, 2013, 48, 1218-1225.	2.8	42
27	Mechanisms of force loss in diabetic mouse skeletal muscle. Muscle and Nerve, 2003, 28, 493-500.	2.2	41
28	Greater impairments in cerebral artery compared with skeletal muscle feed artery endothelial function in a mouse model of increased large artery stiffness. Journal of Physiology, 2015, 593, 1931-1943.	2.9	38
29	Small GTPase ARF6 controls VEGFR2 trafficking and signaling in diabetic retinopathy. Journal of Clinical Investigation, 2017, 127, 4569-4582.	8.2	37
30	Influence of ageing and physical activity on vascular morphology in rat skeletal muscle. Journal of Physiology, 2006, 575, 617-626.	2.9	36
31	Lifelong SIRT-1 overexpression attenuates large artery stiffening with advancing age. Aging, 2020, 12, 11314-11324.	3.1	27
32	Age-related arterial immune cell infiltration in mice is attenuated by caloric restriction or voluntary exercise. Experimental Gerontology, 2018, 109, 99-107.	2.8	26
33	Induced Trf2 deletion leads to aging vascular phenotype in mice associated with arterial telomere uncapping, senescence signaling, and oxidative stress. Journal of Molecular and Cellular Cardiology, 2019, 127, 74-82.	1.9	24
34	Experimental reduction of miR-92a mimics arterial aging. Experimental Gerontology, 2016, 83, 165-170.	2.8	23
35	P2Y2 Receptor Promotes High-Fat Diet-Induced Obesity. Frontiers in Endocrinology, 2020, 11, 341.	3.5	23
36	Dichotomous mechanisms of aortic stiffening in high-fat diet fed young and old B6D2F1 mice. Physiological Reports, 2014, 2, e00268.	1.7	21

#	Article	IF	Citations
37	Smooth muscle specific disruption of the endothelin-A receptor in mice reduces arterial pressure, and vascular reactivity and affects vascular development. Life Sciences, 2014, 118, 238-243.	4.3	20
38	Effects of aging, TNF-α, and exercise training on angiotensin II-induced vasoconstriction of rat skeletal muscle arterioles. Journal of Applied Physiology, 2012, 113, 1091-1100.	2.5	19
39	Differential effects of aging and exercise on intra-abdominal adipose arteriolar function and blood flow regulation. Journal of Applied Physiology, 2013, 114, 808-815.	2.5	15
40	T lymphocyte depletion ameliorates age-related metabolic impairments in mice. GeroScience, 2021, 43, 1331-1347.	4.6	15
41	Cerebral and skeletal muscle feed artery vasoconstrictor responses in a mouse model with greater large elastic artery stiffness. Experimental Physiology, 2019, 104, 434-442.	2.0	13
42	Human skeletal muscle feed arteries: evidence of regulatory potential. Acta Physiologica, 2012, 206, 135-141.	3.8	12
43	Age-related arterial telomere uncapping and senescence is greater in women compared with men. Experimental Gerontology, 2016, 73, 65-71.	2.8	12
44	Aging differentially impacts vasodilation and angiogenesis in arteries from the white and brown adipose tissues. Experimental Gerontology, 2020, 142, 111126.	2.8	12
45	Selected life-extending interventions reduce arterial CXCL10 and macrophage colony-stimulating factor in aged mouse arteries. Cytokine, 2017, 96, 102-106.	3.2	9
46	Reversing age-associated arterial dysfunction: insight from preclinical models. Journal of Applied Physiology, 2018, 125, 1860-1870.	2.5	9
47	The pro-atherogenic response to disturbed blood flow is increased by a western diet, but not by old age. Scientific Reports, 2019, 9, 2925.	3.3	9
48	T cells mediate cell nonâ€autonomous arterial ageing in mice. Journal of Physiology, 2021, 599, 3973-3991.	2.9	9
49	Impact of high-fat diet on vasoconstrictor reactivity of white and brown adipose tissue resistance arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H485-H494.	3.2	8
50	Dietary Glycocalyx Precursor Supplementation Ameliorates Ageâ€Related Vascular Dysfunction. FASEB Journal, 2019, 33, 828.1.	0.5	7
51	Deletion of Robo4 prevents highâ€fat dietâ€induced adipose artery and systemic metabolic dysfunction. Microcirculation, 2019, 26, e12540.	1.8	4
52	Chronic aerobic exercise: targeting two birds with one stone. Journal of Physiology, 2021, 599, 1015-1016.	2.9	2
53	Dietary rapamycin selectively improves arterial function in old mice. FASEB Journal, 2013, 27, 1194.17.	0.5	2
54	Telomere uncapping causes cellular senescence and inflammation in arteries: implications for arterial aging. FASEB Journal, 2013, 27, 1131.1.	0.5	2

#	Article	IF	CITATIONS
55	Senolytic Drugs, Dasatinib and Quercetin, Attenuate Adipose Tissue T Lymphocyte Infiltration and Improve Metabolic Function in Old Mice. FASEB Journal, 2021, 35, .	0.5	1
56	Aortic stiffening as a result of reduced elastin content leads to cerebral artery dysfunction. FASEB Journal, 2013, 27, 1194.3.	0.5	1
57	Ageâ€Related Telomere Uncapping Occurs Independent of Telomere Shortening in Mouse Endothelial Cells. FASEB Journal, 2015, 29, 642.1.	0.5	1
58	Sirt1 overexpression attenuates Westernâ€style dietâ€induced aortic stiffening in mice. Physiological Reports, 2022, 10, e15284.	1.7	1
59	Aging results in endothelial cell telomere uncapping that induces senescence, arterial stiffening, and reduced nitric oxide bioavailability. FASEB Journal, 2021, 35, .	0.5	0
60	Telomere uncapping as a possible mechanism for chemotherapyâ€induced vascular toxicity. FASEB Journal, 2021, 35, .	0.5	0
61	Novel Method to Observe Endothelial Cell Telomere Dynamics in Regions Exposed to Lifelong Disturbed Flow in Murine Aorta. FASEB Journal, 2021, 35, .	0.5	0
62	Multicolor fluorescence biosensors reveal a burning need for diversity in the single-cell metabolic landscape. Trends in Endocrinology and Metabolism, 2021, 32, 537-539.	7.1	0
63	Nuclear factor κBâ€associated inflammation mediates impaired vascular endothelial function in nonâ€diabetic middleâ€aged and older overweight/obese men. FASEB Journal, 2008, 22, 743.2.	0.5	0
64	Aging is Associated with Increased Susceptibility to Western Dietâ€Induced Glucose Intolerance and Endothelial Dysfunction in Mice. FASEB Journal, 2008, 22, 1226.7.	0.5	0
65	Chronic aerobic exercise opposes age―and high fat dietâ€associated vascular endothelial dysfunction: relation to IKKβ and AMPK. FASEB Journal, 2009, 23, 777.7.	0.5	0
66	Voluntary aerobic exercise abolishes ageâ€associated arterial stiffening in mice: relation to collagen subtype expression in the medial and adventitial layers. FASEB Journal, 2009, 23, 774.13.	0.5	0
67	Absence of Inhibitor of Nuclear Factor κ B Kinaseâ€Mediated Suppression of Vascular Endothelial Function in Middleâ€Aged/Older Adults Who Exercise. FASEB Journal, 2009, 23, LB61.	0.5	0
68	Aging increases susceptibility to western dietâ€induced glucose intolerance and insulin resistance in mice. FASEB Journal, 2009, 23, 990.18.	0.5	0
69	Shortâ€term AMPK activation improves vascular endothelial function in old mice by a different mechanism than habitual aerobic exercise. FASEB Journal, 2010, 24, 619.9.	0.5	0
70	Lifeâ€long caloric restriction confers pronounced AMPKâ€dependent cardioprotection. FASEB Journal, 2010, 24, .	0.5	0
71	Habitual aerobic exercise reverses ageâ€associated increases in transforming growth factor beta 1 in carotid arteries of mice. FASEB Journal, 2010, 24, 790.6.	0.5	0
72	Voluntary running and caloric restriction reverse cerebrovascular endothelial dysfunction in old mice by restoring nitric oxide bioavailability. FASEB Journal, 2011, 25, 1108.16.	0.5	0

#	Article	IF	CITATIONS
73	Increased TRF2 binding likely limits telomere uncapping in older human arteries despite ageâ€related telomere attrition. FASEB Journal, 2012, 26, 865.10.	0.5	0
74	Whole body C bl Associated Protein (CAP) deleted mice display impaired endothelium dependent dilation and nitric oxide bioavailability. FASEB Journal, 2012, 26, 1129.12.	0.5	0
75	Blunting of Endothelium Dependent Dilation in Adipose Tissue Arteries by Tumor Necrosis Factor Alpha is Lost after High Fat Feeding. FASEB Journal, 2012, 26, 680.17.	0.5	0
76	Evidence of the regulatory potential of human skeletal muscle feed arteries. FASEB Journal, 2012, 26, 1138.29.	0.5	0
77	Smaller cerebrovascular arteries have a greater ageâ€related endothelial dysfunction and a blunted response to lifeâ€long caloric restriction. FASEB Journal, 2012, 26, 685.31.	0.5	0
78	Morphological Changes Underlying High Fat Dietâ€Associated Arterial Stiffening Differ with Advancing Age. FASEB Journal, 2013, 27, 1194.16.	0.5	0
79	Differential effects of aging and exercise training on intraâ€abdominal adipose arteriolar function and blood flow regulation. FASEB Journal, 2013, 27, 898.6.	0.5	0
80	SIRT1 overexpression protects against high fat dietâ€induced cerebral artery endothelial dysfunction (1070.10). FASEB Journal, 2014, 28, 1070.10.	0.5	0
81	Partial Carotid Ligation Impairs Middle Cerebral Artery Endothelial Function in Old Mice. FASEB Journal, 2015, 29, 949.1.	0.5	0
82	Endothelial ARF6 deletion impairs insulinâ€induced dilation of adipose arteries and systemic glucose tolerance. FASEB Journal, 2015, 29, 802.1.	0.5	0
83	Inhibition of MiRâ€92 Mimics Arterial Aging. FASEB Journal, 2015, 29, 1047.3.	0.5	0
84	Aging is associated with reduced vasodilation to insulin in subcutaneous adipose arteries in B6D2F1 mice. FASEB Journal, 2015, 29, 1044.5.	0.5	0
85	Deletion of miRâ€92a Results in Glucose Intolerance via Impaired Pancreatic Beta Cell Function. FASEB Journal, 2019, 33, 714.2.	0.5	0
86	Aged endothelial cells exhibit a metabolic shift from anaerobic glycolysis to oxidative phosphorylation. FASEB Journal, 2019, 33, 693.14.	0.5	0
87	Genetic deletion of the DNA damage repair protein, ATM kinase, is not sufficient to induce vascular dysfunction in young mice. FASEB Journal, 2019, 33, .	0.5	0
88	Ablation of Endothelial mTOR is Benign in Young Mice and Reverses Ageâ€Related Arterial and Metabolic Impairments in Old Mice. FASEB Journal, 2022, 36, .	0.5	0