Luca Francaviglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3419240/publications.pdf Version: 2024-02-01

Ι.Π. Εβλης ανισιμά

#	Article	IF	CITATIONS
1	Bistability of Contact Angle and Its Role in Achieving Quantum-Thin Self-Assisted GaAs nanowires. Nano Letters, 2018, 18, 49-57.	4.5	62
2	Three-dimensional nanoscale study of Al segregation and quantum dot formation in GaAs/AlGaAs core-shell nanowires. Applied Physics Letters, 2014, 105, .	1.5	45
3	Strain-Induced Band Gap Engineering in Selectively Grown GaN–(Al,Ga)N Core–Shell Nanowire Heterostructures. Nano Letters, 2016, 16, 7098-7106.	4.5	41
4	Optimizing the yield of A-polar GaAs nanowires to achieve defect-free zinc blende structure and enhanced optical functionality. Nanoscale, 2018, 10, 17080-17091.	2.8	31
5	Ill–V Integration on Si(100): Vertical Nanospades. ACS Nano, 2019, 13, 5833-5840.	7.3	24
6	Quantitative Nanoscale Absorption Mapping: A Novel Technique To Probe Optical Absorption of Two-Dimensional Materials. Nano Letters, 2020, 20, 567-576.	4.5	22
7	Surface passivation and self-regulated shell growth in selective area-grown GaN–(Al,Ga)N core–shell nanowires. Nanoscale, 2017, 9, 7179-7188.	2.8	21
8	Dopant-Induced Modifications of Ga <i>_x</i> In _(1–<i>x</i>) P Nanowire-Based p–n Junctions Monolithically Integrated on Si(111). ACS Applied Materials & Interfaces, 2018, 10, 32588-32596.	4.0	18
9	Quantum dots in the GaAs/Al <i>x</i> Ga1â^' <i>x</i> As core-shell nanowires: Statistical occurrence as a function of the shell thickness. Applied Physics Letters, 2015, 107, .	1.5	13
10	Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10 thin films. Journal of Materials Chemistry C, 2018, 6, 6216-6221.	2.7	12
11	GaAs nanoscale membranes: prospects for seamless integration of Ill–Vs on silicon. Nanoscale, 2020, 12, 815-824.	2.8	12
12	Segregation scheme of indium in AlGaInAs nanowire shells. Physical Review Materials, 2019, 3, .	0.9	11
13	Anisotropic-Strain-Induced Band Gap Engineering in Nanowire-Based Quantum Dots. Nano Letters, 2018, 18, 2393-2401.	4.5	10
14	3D Ordering at the Liquid–Solid Polar Interface of Nanowires. Advanced Materials, 2020, 32, e2001030.	11.1	10
15	Increasing N content in GaNAsP nanowires suppresses the impact of polytypism on luminescence. Nanotechnology, 2019, 30, 405703.	1.3	6
16	Autonomous scanning probe microscopy investigations over WS2 and Au{111}. Npj Computational Materials, 2022, 8, .	3.5	6
17	Formation, electronic structure, and optical properties of self-assembled quantum-dot single-photon emitters in Ga(N,As,P) nanowires. Physical Review Materials, 2020, 4, .	0.9	4
18	Quantum Dots in Nanowires. Semiconductors and Semimetals, 2016, , 159-184.	0.4	3

LUCA FRANCAVIGLIA

#	Article	IF	CITATIONS
19	Tuning adatom mobility and nanoscale segregation by twin formation and polytypism. Nanotechnology, 2019, 30, 054006.	1.3	3
20	Ag–Diamond Core–Shell Nanostructures Incorporated with Silicon-Vacancy Centers. ACS Materials Au, 2022, 2, 85-93.	2.6	3
21	Excitonic absorption and defect-related emission in three-dimensional MoS ₂ pyramids. Nanoscale, 2022, 14, 1179-1186.	2.8	3
22	Optimizing cathodoluminescence microscopy of buried interfaces through nanoscale heterostructure design. Nanoscale, 2022, 14, 7569-7578.	2.8	2
23	Nanoporous silicon tubes: the role of geometry in nanostructure formation and application to light emitting diodes. Journal Physics D: Applied Physics, 2017, 50, 265101.	1.3	1
24	Bi-stability of contact angle and its role in tuning the morphology of self-assisted GaAs nanowires. , 2018, , .		0
25	10.1063/1.4904952.1., 2014, , .		Ο