Chris Nixon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3418945/publications.pdf

Version: 2024-02-01

172457 214800 2,465 66 29 47 h-index citations g-index papers 66 66 66 2066 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Eccentric Nature of Eccentric Tidal Disruption Events. Astrophysical Journal, 2022, 924, 34.	4.5	10
2	Stars Crushed by Black Holes. II. A Physical Model of Adiabatic Compression and Shock Formation in Tidal Disruption Events. Astrophysical Journal, 2022, 926, 47.	4.5	8
3	Stellar Revival and Repeated Flares in Deeply Plunging Tidal Disruption Events. Astrophysical Journal Letters, 2022, 927, L25.	8.3	10
4	Using the Hills Mechanism to Generate Repeating Partial Tidal Disruption Events and ASASSN-14ko. Astrophysical Journal Letters, 2022, 929, L20.	8.3	20
5	Exploring compact binary merger host galaxies and environments with <tt>zELDA</tt> . Monthly Notices of the Royal Astronomical Society, 2022, 514, 2716-2735.	4.4	12
6	Disk Tearing: Numerical Investigation of Warped Disk Instability. Astrophysical Journal, 2021, 909, 81.	4.5	20
7	Disk Tearing: Implications for Black Hole Accretion and AGN Variability. Astrophysical Journal, 2021, 909, 82.	4.5	39
8	Partial, Zombie, and Full Tidal Disruption of Stars by Supermassive Black Holes. Astrophysical Journal, 2021, 922, 168.	4.5	22
9	On the Dynamics of Low-viscosity Warped Disks around Black Holes. Astrophysical Journal, 2021, 922, 243.	4.5	6
10	Stars Crushed by Black Holes. I. On the Energy Distribution of Stellar Debris in Tidal Disruption Events. Astrophysical Journal, 2021, 923, 184.	4.5	12
11	Instability of non-Keplerian warped discs. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1148-1157.	4.4	12
12	The Gravitational Instability of Adiabatic Filaments. Astrophysical Journal, Supplement Series, 2020, 247, 51.	7.7	17
13	Variability in Short Gamma-Ray Bursts: Gravitationally Unstable Tidal Tails. Astrophysical Journal Letters, 2020, 896, L38.	8.3	10
14	Extreme variability in an active galactic nucleus: Gaia16aax. Monthly Notices of the Royal Astronomical Society, 2020, 493, 477-495.	4.4	17
15	On the orbital evolution of binaries with circumbinary discs. Astronomy and Astrophysics, 2020, 641, A64.	5.1	43
16	Non-thermal filaments from the tidal destruction of clouds in the Galactic centre. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1868-1877.	4.4	4
17	Fallback Rates from Partial Tidal Disruption Events. Astrophysical Journal, 2020, 899, 36.	4.5	32
18	The Persistence of Pancakes and the Revival of Self-gravity in Tidal Disruption Events. Astrophysical Journal Letters, 2020, 900, L39.	8.3	5

#	Article	IF	Citations
19	Be Star Disks: Powered by a Nonzero Central Torque. Astrophysical Journal Letters, 2020, 905, L29.	8.3	7
20	Short Gamma-Ray Bursts and the Decompression of Neutron Star Matter in Tidal Streams. Astrophysical Journal Letters, 2020, 900, L12.	8.3	1
21	The Influence of Black Hole Binarity on Tidal Disruption Events. Space Science Reviews, 2019, 215, 1.	8.1	6
22	Ultra-deep tidal disruption events: prompt self-intersections and observables. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5267-5278.	4.4	11
23	Galactic chimney sweeping: the effect of â€~gradual' stellar feedback mechanisms on the evolution of dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4278-4299.	4.4	3
24	On the Diversity of Fallback Rates from Tidal Disruption Events with Accurate Stellar Structure. Astrophysical Journal Letters, 2019, 882, L26.	8.3	43
25	What is wrong with steady accretion discs?. Astronomy and Astrophysics, 2019, 628, A121.	5.1	10
26	On the physical nature of accretion disc viscosity. New Astronomy, 2019, 70, 7-11.	1.8	56
27	Tidal Disruption Events: The Role of Stellar Spin. Astrophysical Journal, 2019, 872, 163.	4.5	45
28	Generalized Warped Disk Equations. Astrophysical Journal, 2019, 875, 5.	4.5	30
29	Partial Stellar Disruption by a Supermassive Black Hole: Is the Light Curve Really Proportional to t ^{â^'9/4} ?. Astrophysical Journal Letters, 2019, 883, L17.	8.3	58
30	On the role of magnetic fields in star formation. New Astronomy, 2019, 67, 89-96.	1.8	7
31	Dynamical Properties of Eccentric Nuclear Disks: Stability, Longevity, and Implications for Tidal Disruption Rates in Post-merger Galaxies. Astrophysical Journal, 2018, 853, 141.	4.5	40
32	Instability of warped discs. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1519-1531.	4.4	30
33	Super-Eddington accretion in tidal disruption events: the impactof realistic fallback rates on accretion rates. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3016-3024.	4.4	34
34	Warping a protoplanetary disc with a planet on an inclined orbit. Monthly Notices of the Royal Astronomical Society, 2018, 481, 20-35.	4.4	39
35	The Maximum Mass Solar Nebula and the early formation of planets. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3273-3278.	4.4	22
36	<scp>Phantom</scp> : A Smoothed Particle Hydrodynamics and Magnetohydrodynamics Code for Astrophysics. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	267

#	Article	IF	CITATIONS
37	The galactic rate of second- and third-generation disc and planet formation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4486-4498.	4.4	9
38	An ultra-fast inflow in the luminous Seyfert PG1211+143. Monthly Notices of the Royal Astronomical Society, $2018, , .$	4.4	3
39	The origin of the structure of large-scale magnetic fields in disc galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3539-3551.	4.4	9
40	Circumbinary discs around merging stellar-mass black holes. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4732-4737.	4.4	12
41	Misaligned Accretion and Jet Production. Astrophysical Journal Letters, 2018, 857, L7.	8.3	12
42	Tidal disruption events from supermassive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3840-3864.	4.4	62
43	Planet–disc evolution and the formation of Kozai–Lidov planets. Monthly Notices of the Royal Astronomical Society, 2016, 458, 4345-4353.	4.4	91
44	On the structure of tidally disrupted stellar debris streams. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3089-3103.	4.4	46
45	Black holes in stellar-mass binary systems: expiating original spin?. Monthly Notices of the Royal Astronomical Society, 2016, 462, 464-467.	4.4	11
46	Post-periapsis pancakes: sustenance for self-gravity in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3612-3627.	4.4	49
47	Warp Propagation in Astrophysical Discs. Lecture Notes in Physics, 2016, , 45-63.	0.7	19
48	Accretion disc viscosity: a limit on the anisotropy. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2459-2465.	4.4	11
49	Misaligned gas discs around eccentric black hole binaries and implications for the final-parsec problem. Monthly Notices of the Royal Astronomical Society, 2015, 449, 65-76.	4.4	78
50	TIDAL TORQUES ON MISALIGNED DISKS IN BINARY SYSTEMS. Astrophysical Journal, 2015, 800, 96.	4.5	68
51	Resonances in retrograde circumbinary discs. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3472-3483.	4.4	32
52	VARIABILITY IN TIDAL DISRUPTION EVENTS: GRAVITATIONALLY UNSTABLE STREAMS. Astrophysical Journal Letters, 2015, 808, L11.	8.3	66
53	Tearing up a misaligned accretion disc with a binary companion. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1251-1258.	4.4	62
54	AGN flickering and chaotic accretion. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 453, L46-L47.	3.3	80

#	Article	IF	CITATION
55	Modelling spikes in quasar accretion disc temperature. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1090-1109.	4.4	9
56	A physical model for state transitions in black hole X-ray binaries. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3994-3999.	4.4	38
57	GIANT OUTBURSTS IN Be/X-RAY BINARIES. Astrophysical Journal Letters, 2014, 790, L34.	8.3	79
58	Misaligned accretion on to supermassive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2285-2296.	4.4	16
59	THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. Astrophysical Journal Letters, 2014, 792, L33.	8.3	122
60	DO JETS PRECESS… OR EVEN MOVE AT ALL?. Astrophysical Journal Letters, 2013, 765, L7.	8.3	33
61	SMBH accretion and mergers: removing the symmetries. Classical and Quantum Gravity, 2013, 30, 244006.	4.0	8
62	Tearing up the disc: misaligned accretion on to a binary. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1946-1954.	4.4	146
63	TEARING UP THE DISK: HOW BLACK HOLES ACCRETE. Astrophysical Journal Letters, 2012, 757, L24.	8.3	110
64	Retrograde accretion and merging supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2011, 412, 1591-1598.	4.4	108
65	The final parsec problem: aligning a binary with an external accretion disc. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 417, L66-L69.	3.3	50
66	The observable effects of tidally induced warps in protostellar discs. Monthly Notices of the Royal	4.4	18