Shuangshi Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3418784/publications.pdf

Version: 2024-02-01

147801 182427 2,744 62 31 51 citations h-index g-index papers 62 62 62 2403 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	NiCo2O4/BiOCl/Bi24O31Br10 ternary Z-scheme heterojunction enhance peroxymonosulfate activation under visible light: Catalyst synthesis and reaction mechanism. Chinese Chemical Letters, 2023, 34, 107503.	9.0	4
2	Optimization of the photocatalyst coating and operating conditions in an intimately coupled photocatalysis and biodegradation reactor: Towards stable and efficient performance. Environmental Research, 2022, 204, 111971.	7. 5	10
3	Nitrogen vacancies induce sustainable redox of iron-cobalt bimetals for efficient peroxymonosulfate activation: Dual-path electron transfer. Chemical Engineering Journal, 2022, 427, 131702.	12.7	25
4	In situ construction of step-scheme polypyrrole/BiPO4 heterostructure photocatalysts with enhanced photocatalytic performance. Surfaces and Interfaces, 2022, 30, 101848.	3.0	2
5	Carbon quantum dots induce in-situ formation of oxygen vacancies and domination of {0 0 1} facets in BiOBr microflower for simultaneous removal of aqueous tetracycline and hexavalent chromium. Chemical Engineering Journal, 2022, 442, 136249.	12.7	25
6	Nitrogen Vacancy-Modulated Peroxymonosulfate Nonradical Activation for Organic Contaminant Removal via High-Valent Cobalt-Oxo Species. Environmental Science & Dechnology, 2022, 56, 5611-5619.	10.0	109
7	In situ preparation of BiOCl0.7510.25/g-C3N4-Cl in reduced graphene hydrogel photoanode for simultaneous removal of tetracycline hydrochloride and hexavalent chromium with efficient electricity generation. Environmental Research, 2022, 212, 113247.	7.5	8
8	High-efficiency leaching of valuable metals from waste Li-ion batteries using deep eutectic solvents. Environmental Research, 2022, 212, 113286.	7. 5	25
9	Cl-based functional group modification MIL-53(Fe) as efficient photocatalysts for degradation of tetracycline hydrochloride. Journal of Hazardous Materials, 2022, 434, 128864.	12.4	41
10	Enhanced photo-Fenton degradation of tetracycline hydrochloride by 2, 5-dioxido-1, 4-benzenedicarboxylate-functionalized MIL-100(Fe). Environmental Research, 2022, 212, 113399.	7. 5	7
11	High-performance iron-doped molybdenum disulfide photocatalysts enhance peroxymonosulfate activation for water decontamination. Chemical Engineering Journal, 2022, 446, 137380.	12.7	19
12	Half-wave rectified alternating current electrochemical-assembled devices for high-capacity extraction of Pb2+ from dilute wastewater. Journal of Cleaner Production, 2022, 363, 132531.	9.3	2
13	Simultaneous elimination of amoxicillin and antibiotic resistance genes in activated sludge process: Contributions of easy-to-biodegrade food. Science of the Total Environment, 2021, 764, 142907.	8.0	20
14	Visible-light activation of peroxymonosulfate by NiCo ₂ 0 ₃₁ Br ₁₀ to accelerate tetracycline degradation. Catalysis Science and Technology, 2021, 11, 2110-2118.	4.1	17
15	Fabrication of oxygen defect-rich pencil-like ZnO nanorods with CDots and Ag co-enhanced photocatalytic activity for tetracycline hydrochloride degradation. Separation and Purification Technology, 2021, 266, 118605.	7.9	24
16	Efficient photoactivation of peroxymonosulfate by Z-scheme nitrogen-defect-rich NiCo2O4/g-C3N4 for rapid emerging pollutants degradation. Journal of Hazardous Materials, 2021, 414, 125528.	12.4	87
17	Comparing dark- and photo-Fenton-like degradation of emerging pollutant over photo-switchable Bi2WO6/CuFe2O4: Investigation on dominant reactive oxidation species. Journal of Environmental Sciences, 2021, 106, 147-160.	6.1	16
18	Could co-substrate sodium acetate simultaneously promote Chlorella to degrade amoxicillin and produce bioresources?. Journal of Hazardous Materials, 2021, 417, 126147.	12.4	26

#	Article	IF	CITATIONS
19	Tetracycline hydrochloride degradation over manganese cobaltate (MnCo2O4) modified ultrathin graphitic carbon nitride (g-C3N4) nanosheet through the highly efficient activation of peroxymonosulfate under visible light irradiation. Journal of Colloid and Interface Science, 2021, 600, 449-462.	9.4	52
20	Enhanced photocatalytic performance of metal silver and carbon dots co-doped BiOI photocatalysts and mechanism investigation. Environmental Science and Pollution Research, 2020, 27, 17516-17529.	5. 3	16
21	Photo-Fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin g-C3N4 nanosheet with rich nitrogen defect: Degradation mechanism, pathways, and products toxicity assessment. Applied Catalysis B: Environmental, 2020, 278, 119349.	20.2	206
22	Promoting Chlorella photosynthesis and bioresource production using directionally prepared carbon dots with tunable emission. Journal of Colloid and Interface Science, 2020, 569, 195-203.	9.4	36
23	Towards a simultaneous combination of ozonation and biodegradation for enhancing tetracycline decomposition and toxicity elimination. Bioresource Technology, 2020, 304, 123009.	9.6	64
24	Co-substrate addition accelerated amoxicillin degradation and detoxification by up-regulating degradation related enzymes and promoting cell resistance. Journal of Hazardous Materials, 2020, 394, 122574.	12.4	35
25	Study on Aeration Optimization and Sewage Treatment Efficiency of a Novel Micro-Pressure Swirl Reactor (MPSR). Water (Switzerland), 2020, 12, 890.	2.7	11
26	Enhancing aqueous pollutant photodegradation <i>via</i> a Fermi level matched Z-scheme BiOI/Pt/g-C ₃ N ₄ photocatalyst: unobstructed photogenerated charge behavior and degradation pathway exploration. Catalysis Science and Technology, 2020, 10, 3324-3333.	4.1	33
27	Porous 0D/3D NiCo2O4/g-C3N4 accelerate emerging pollutant degradation in PMS/vis system: Degradation mechanism, pathway and toxicity assessment. Chemical Engineering Journal, 2020, 397, 125356.	12.7	98
28	Eliminating partial-transformation products and mitigating residual toxicity of amoxicillin through intimately coupled photocatalysis and biodegradation. Chemosphere, 2019, 237, 124491.	8.2	33
29	Visible-light-driven photo-Fenton reaction with α-Fe2O3/BiOI at near neutral pH: Boosted photogenerated charge separation, optimum operating parameters and mechanism insight. Journal of Colloid and Interface Science, 2019, 554, 531-543.	9.4	76
30	Respective construction of Type-II and direct Z-scheme heterostructure by selectively depositing CdS on {001} and {101} facets of TiO2 nanosheet with CDots modification: A comprehensive comparison. Journal of Hazardous Materials, 2019, 366, 311-320.	12.4	45
31	Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor. Water Research, 2018, 136, 75-83.	11.3	124
32	Fabrication of Ag/CDots/BiOBr ternary photocatalyst with enhanced visible-light driven photocatalytic activity for 4-chlorophenol degradation. Journal of Molecular Liquids, 2018, 262, 194-203.	4.9	43
33	Environment-friendly OD/2D Ag/CDots/BiOCl heterojunction with enhanced photocatalytic tetracycline degradation and mechanism insight. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 411-417.	3.9	21
34	Photocatalytic-induced electron transfer via anode-respiring bacteria (ARB) at an anode that intimately couples ARB and a TiO2 photocatalyst. Chemical Engineering Journal, 2018, 338, 745-751.	12.7	32
35	Simultaneous pollutant degradation and power generation in visible-light responsive photocatalytic fuel cell with an Ag-TiO2 loaded photoanode. Nano Structures Nano Objects, 2018, 15, 167-172.	3.5	43
36	Photocatalytic removal organic matter and bacteria simultaneously from real WWTP effluent with power generation concomitantly: Using an Er Al ZnO photo-anode. Separation and Purification Technology, 2018, 191, 101-107.	7.9	20

#	Article	IF	CITATIONS
37	Enhancing chlorophenol biodegradation: Using a co-substrate strategy to resist photo-H2O2 stress in a photocatalytic-biological reactor. Chemical Engineering Journal, 2018, 352, 255-261.	12.7	38
38	Model-based evaluation of tetracycline hydrochloride removal and mineralization in an intimately coupled photocatalysis and biodegradation reactor. Chemical Engineering Journal, 2018, 351, 967-975.	12.7	64
39	Visible-Light-Driven Photocatalytic Fuel Cell with an Ag-TiO2 Carbon Foam Anode for Simultaneous 4-Chlorophenol Degradation and Energy Recovery. ChemEngineering, 2018, 2, 20.	2.4	5
40	Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB). Chemical Engineering Journal, 2017, 316, 7-14.	12.7	207
41	Carbon nanodots/WO 3 nanorods Z-scheme composites: Remarkably enhanced photocatalytic performance under broad spectrum. Applied Catalysis B: Environmental, 2017, 209, 253-264.	20.2	173
42	Intimate coupling of an N-doped TiO2 photocatalyst and anode respiring bacteria for enhancing 4-chlorophenol degradation and current generation. Chemical Engineering Journal, 2017, 317, 882-889.	12.7	77
43	Construction of Er ³⁺ :YAlO ₃ /RGO/TiO ₂ Hybrid Electrode with Enhanced Photoelectrocatalytic Performance in Methylene Blue Degradation Under Visible Light. Photochemistry and Photobiology, 2017, 93, 1170-1177.	2.5	8
44	Preparation of sponge carrier supported photocatalyst by self-assembly technique for phenol photodegradation in visible light. Molecular Catalysis, 2017, 432, 1-7.	2.0	11
45	An environmentally friendly Z-scheme WO3/CDots/CdS heterostructure with remarkable photocatalytic activity and anti-photocorrosion performance. Journal of Catalysis, 2017, 356, 1-13.	6.2	99
46	Characteristics and kinetics simulation of controlled-release KMnO4 for phenol remediation. Water Science and Technology, 2016, 74, 647-654.	2.5	9
47	N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 325, 104-110.	3.9	128
48	Identifying the role of reactive oxygen species (ROSs) in Fusarium solani spores inactivation. AMB Express, 2016, 6, 81.	3.0	9
49	Role of self-assembly coated Er 3+: YAlO 3 /TiO 2 in intimate coupling of visible-light-responsive photocatalysis and biodegradation reactions. Journal of Hazardous Materials, 2016, 302, 386-394.	12.4	62
50	Synthesis of Er3+:Al2O3-doped and rutile-dominant TiO2 composite with increased responsive wavelength range and enhanced photocatalytic performance under visible light irradiation. Journal of Molecular Catalysis A, 2015, 407, 38-46.	4.8	10
51	Response to Comment on "Intimate Coupling of Photocatalysis and Biodegradation for Degrading Phenol Using Different Light Types: Visible Light vs UV Light― Environmental Science & Technology, 2015, 49, 13077-13078.	10.0	5
52	A facile one-pot synthesis of Erâ€"Al co-doped ZnO nanoparticles with enhanced photocatalytic performance under visible light. Materials Letters, 2015, 143, 312-314.	2.6	32
53	Intimate Coupling of Photocatalysis and Biodegradation for Degrading Phenol Using Different Light Types: Visible Light vs UV Light. Environmental Science & Environmental Science & 2015, 49, 7776-7783.	10.0	85
54	Phenol removal and biofilm response in coupling of visible-light-driven photocatalysis and biodegradation: Effect of hydrothermal treatment temperature. International Biodeterioration and Biodegradation, 2015, 104, 178-185.	3.9	36

#	Article	IF	CITATIONS
55	Visibleâ€light photocatalytic degradation of methyl orange over spherical activated carbonâ€supported and Er ³⁺ : <scp>YAlO₃</scp> â€doped <scp>TiO₂</scp> in a fluidized bed. Journal of Chemical Technology and Biotechnology, 2015, 90, 880-887.	3.2	42
56	Insights into the Synergistic Effect of Fungi and Bacteria for Reactive Red Decolorization. Journal of Spectroscopy, 2014, 2014, 1-4.	1.3	4
57	Microbial selection pressure is not a prerequisite for granulation: Dynamic granulation and microbial community study in a complete mixing bioreactor. Bioresource Technology, 2014, 161, 102-108.	9.6	77
58	Distribution characteristics of extracellular polymeric substances and cells of aerobic granules cultivated in a continuousâ€flow airlift reactor. Journal of Chemical Technology and Biotechnology, 2013, 88, 942-947.	3.2	26
59	Suspended solid abatement in a conical fluidized bed flocculator. Frontiers of Environmental Science and Engineering, 2013, 7, 127-134.	6.0	4
60	Granulation of activated sludge in a continuous flow airlift reactor by strong drag force. Biotechnology and Bioprocess Engineering, 2013, 18, 289-299.	2.6	35
61	Radial distribution modeling of liquid-phase phenol concentration in a liquid–solid fluidized bed photoreactor. Water Science and Technology, 2012, 65, 977-982.	2.5	3
62	Preparation, characterization and performance of a novel visible light responsive spherical activated carbon-supported and Er3+:YFeO3-doped TiO2 photocatalyst. Journal of Hazardous Materials, 2012, 199-200, 301-308.	12.4	40