
Sagar H Nikam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3418748/publications.pdf Version: 2024-02-01

SACAR H NIKAM

#	Article	IF	CITATIONS
1	Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regime. Materials, 2022, 15, 2238.	2.9	9
2	Analysis of Spatter Removal by Sieving during a Powder-Bed Fusion Manufacturing Campaign in Grade 23 Titanium Alloy. Metals, 2021, 11, 399.	2.3	6
3	A simplified thermal approximation method to include the effects of Marangoni convection in the melt pools of processes that involve moving point heat sources. Numerical Heat Transfer; Part A: Applications, 2021, 79, 537-552.	2.1	8
4	Optimization of parameters of micro-plasma transferred arc additive manufacturing process using real coded genetic algorithm. International Journal of Advanced Manufacturing Technology, 2020, 106, 1239-1252.	3.0	15
5	Reuse of Grade 23 Ti6Al4V Powder during the Laser-Based Powder Bed Fusion Process. Metals, 2020, 10, 1700.	2.3	20
6	Code-to-code verification for thermal models of melting and solidification in a metal alloy: comparisons between a Finite Volume Method and a Finite Element Method. Mechanical Sciences, 2020, 11, 125-135.	1.0	1
7	Theoretical modeling and finite element simulation of dilution in micro-plasma transferred arc additive manufacturing of metallic materials. International Journal of Mechanical Sciences, 2019, 164, 105166.	6.7	15
8	Modeling and Prediction of Residual Stresses in Additive Layer Manufacturing by Microplasma Transferred Arc Process Using Finite Element Simulation. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141, .	2.2	14
9	3D-finite element simulation and image processing based prediction of width and height of single-layer deposition by micro-plasma-transferred arc process. International Journal of Advanced Manufacturing Technology, 2018, 95, 3679-3691.	3.0	12
10	Finite Element Simulation of Pre-Heating Effect on Melt Pool Size During Micro-Plasma Transferred Arc Deposition Process. IOP Conference Series: Materials Science and Engineering, 2018, 389, 012006.	0.6	2
11	Laser-Based Repair of Damaged Dies, Molds, and Gears. Materials Forming, Machining and Tribology, 2017, , 137-159.	1.1	4
12	Three-dimensional thermal analysis of multi-layer metallic deposition by micro-plasma transferred arc process using finite element simulation. Journal of Materials Processing Technology, 2017, 249, 264-273.	6.3	23
13	Thermal modeling of geometry of single-track deposition in micro-plasma transferred arc deposition process. Journal of Materials Processing Technology, 2016, 230, 121-130.	6.3	23