T Brent Gunnoe List of Publications by Year in descending order Source: https://exaly.com/author-pdf/341850/publications.pdf Version: 2024-02-01 153 papers 5,848 citations 43 h-index 67 g-index 162 all docs 162 docs citations 162 times ranked 4828 citing authors | # | Article | IF | CITATIONS | |----|--|--------------|-----------| | 1 | To Err is Human; To Reproduce Takes Time. ACS Catalysis, 2022, 12, 3644-3650. | 5 . 5 | 16 | | 2 | Aerobic Partial Oxidation of Alkanes Using Photodriven Iron Catalysis. Inorganic Chemistry, 2022, 61, 759-766. | 1.9 | 9 | | 3 | Manganese Catalyzed Partial Oxidation of Light Alkanes. ACS Catalysis, 2022, 12, 5356-5370. | 5 . 5 | 9 | | 4 | Electron-Deficient Ru(II) Complexes as Catalyst Precursors for Ethylene Hydrophenylation. Inorganics, 2022, 10, 76. | 1.2 | 2 | | 5 | Oxidative Alkenylation of Arenes Using Supported Rh Materials: Evidence that Active Catalysts are Formed by Rh Leaching. ChemCatChem, 2021, 13, 260-270. | 1.8 | 9 | | 6 | Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nature Catalysis, 2021, 4, 36-45. | 16.1 | 189 | | 7 | Studies of C–H Activation and Functionalization: Combined Computational and Experimental Efforts to Elucidate Mechanisms, Principles, and Catalysts. Springer Series in Materials Science, 2021, , 767-806. | 0.4 | 2 | | 8 | <i>ACS Catalysis's</i> 10th Anniversary Viewpoints. ACS Catalysis, 2021, 11, 343-344. | 5 . 5 | 0 | | 9 | Role of Axial Ligation in Gating the Reactivity of Dimethylplatinum(III) Diimine Radical Cations. Organometallics, 2021, 40, 333-345. | 1.1 | O | | 10 | <i>ACS Catalysis</i> Welcomes Professor Cathleen Crudden as Editor-in-Chief. ACS Catalysis, 2021, 11, 2397-2397. | 5 . 5 | 0 | | 11 | Reductive C–C Coupling from Molecular Au(I) Hydrocarbyl Complexes: A Mechanistic Study. Journal of the American Chemical Society, 2021, 143, 2509-2522. | 6.6 | 7 | | 12 | Thomas Ward Selected to Receive the 2021 ACS Catalysis Lectureship. ACS Catalysis, 2021, 11, 1816-1817. | 5 . 5 | 0 | | 13 | Advances in Group 10 Transition-Metal-Catalyzed Arene Alkylation and Alkenylation. Journal of the American Chemical Society, 2021, 143, 6746-6766. | 6.6 | 25 | | 14 | Mechanistic Studies of Styrene Production from Benzene and Ethylene Using $[(\hat{l}\cdot\langle sup>2\langle sub>2\langle sub>2\langle sub>4\langle sub>)\langle sub>2\langle sub>Rh(\hat{l}/4-OAc)]\langle sub>2\langle sub>as Catalyst Precursor: Identification of a Bis-Rh\langle sup>I\langle sup>Mono-Cu\langle sup>II\langle sup>Complex As the Catalyst. ACS Catalysis, 2021, 11, 5688-5702.$ | 5 . 5 | 9 | | 15 | Functionalization of RhIll–Me Bonds: Use of "Capping Arene―Ligands to Facilitate Me–X Reductive Elimination. Organometallics, 2021, 40, 1889-1906. | 1.1 | 3 | | 16 | Electrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex. ACS Catalysis, 2021, 11, 7223-7240. | 5 . 5 | 35 | | 17 | Noncovalent Immobilization of Pentamethylcyclopentadienyl Iridium Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. Small Science, 2021, 1, 2100037. | 5.8 | 7 | | 18 | Rhodium and Iridium Complexes Bearing "Capping Arene―Ligands: Synthesis and Characterization.
Organometallics, 2021, 40, 2808-2825. | 1.1 | 4 | | # | Article | IF | Citations | |----|---|-----|-----------| | 19 | Immobilization of "Capping Arene―Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. ACS Catalysis, 2021, 11, 15068-15082. | 5.5 | 8 | | 20 | ACS Catalysis Highlights Its Most Cited Papers from Around the Globe: United Kingdom. ACS Catalysis, 2020, 10, 11663-11664. | 5.5 | 3 | | 21 | Transition-Metal-Catalyzed Arene Alkylation and Alkenylation: Catalytic Processes for the Generation of Chemical Intermediates. ACS Catalysis, 2020, 10, 14080-14092. | 5.5 | 15 | | 22 | Nano-Apples and Orange-Zymes. ACS Catalysis, 2020, 10, 14315-14317. | 5.5 | 33 | | 23 | Effects of Additives on Catalytic Arene C–H Activation: Study of Rh Catalysts Supported by Bis-phosphine Pincer Ligands. Organometallics, 2020, 39, 3918-3935. | 1.1 | 4 | | 24 | <i>ACS Catalysis</i> Highlights Its Most Cited Papers from Around the Globe: Australia, Saudi Arabia, and Singapore. ACS Catalysis, 2020, 10, 10125-10126. | 5.5 | 4 | | 25 | Rhodium-Catalyzed Arene Alkenylation Using Only Dioxygen as the Oxidant. ACS Catalysis, 2020, 10, 11519-11531. | 5.5 | 22 | | 26 | <i>ACS Catalysis</i> Highlights Its Most Cited Papers from Around the Globe: Japan. ACS Catalysis, 2020, 10, 10715-10716. | 5.5 | 3 | | 27 | ACS Catalysis Highlights Its Most Cited Papers From Around the Globe: United States. ACS Catalysis, 2020, 10, 15140-15141. | 5.5 | 0 | | 28 | Organic Electrosynthesis: When Is It Electrocatalysis?. ACS Catalysis, 2020, 10, 13156-13158. | 5.5 | 26 | | 29 | Use of Ligand Steric Properties to Control the Thermodynamics and Kinetics of Oxidative Addition and Reductive Elimination with Pincer-Ligated Rh Complexes. Organometallics, 2020, 39, 1917-1933. | 1.1 | 15 | | 30 | Synthesis of Stilbenes by Rhodium-Catalyzed Aerobic Alkenylation of Arenes via C–H Activation. Journal of the American Chemical Society, 2020, 142, 10534-10543. | 6.6 | 39 | | 31 | Excellence <i>versus</i> Diversity? Not an Either/Or Choice. ACS Catalysis, 2020, 10, 7310-7311. | 5.5 | 4 | | 32 | Advances in Rhodium-Catalyzed Oxidative Arene Alkenylation. Accounts of Chemical Research, 2020, 53, 920-936. | 7.6 | 58 | | 33 | ACS Catalysis Highlights Its Most Cited Papers from Around the Globe: Denmark and Sweden. ACS Catalysis, 2020, 10, 12340-12341. | 5.5 | 2 | | 34 | <i>ACS Catalysis</i> Highlights Its Most Cited Papers from Around the Globe: Germany and The Netherlands. ACS Catalysis, 2020, 10, 13549-13550. | 5.5 | 2 | | 35 | Styrene Production from Benzene and Ethylene Catalyzed by Palladium(II): Enhancement of Selectivity toward Styrene via Temperature-dependent Vinyl Ester Consumption. Organometallics, 2019, 38, 3532-3541. | 1.1 | 15 | | 36 | Mechanistic Studies of Single-Step Styrene Production Catalyzed by Rh Complexes with Diimine Ligands: An Evaluation of the Role of Ligands and Induction Period. ACS Catalysis, 2019, 9, 7457-7475. | 5.5 | 23 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 37 | Selective Photoâ€Oxygenation of Light Alkanes Using Iodine Oxides and Chloride. ChemCatChem, 2019, 11, 5045-5054. | 1.8 | 14 | | 38 | Generalized Synthetic Strategy for Transition-Metal-Doped Brookite-Phase TiO ₂ Nanorods. Journal of the American Chemical Society, 2019, 141, 16548-16552. | 6.6 | 78 | | 39 | Rhodium-Catalyzed Alkenylation of Toluene Using 1-Pentene: Regioselectivity To Generate Precursors for Bicyclic Compounds. Organometallics, 2019, 38, 3860-3870. | 1.1 | 15 | | 40 | DFT Mechanistic Study of Methane Mono-Esterification by Hypervalent Iodine Alkane Oxidation Process. Journal of Physical Chemistry C, 2019, 123, 15674-15684. | 1.5 | 13 | | 41 | Insights into the Speciation of Cu in the Cu-H-Mordenite Catalyst for the Oxidation of Methane to Methanol. ACS Catalysis, 2019, 9, 5308-5319. | 5.5 | 70 | | 42 | High Selectivity Towards Formate Production by Electrochemical Reduction of Carbon Dioxide at Copper–Bismuth Dendrites. ChemSusChem, 2019, 12, 231-239. | 3.6 | 51 | | 43 | Mechanism of Hydrocarbon Functionalization by an Iodate/Chloride System: The Role of Ester Protection. ACS Catalysis, 2018, 8, 3138-3149. | 5.5 | 23 | | 44 | Catalytic Synthesis of Superlinear Alkenyl Arenes Using a Rh(I) Catalyst Supported by a "Capping Arene―
Ligand: Access to Aerobic Catalysis. Journal of the American Chemical Society, 2018, 140, 17007-17018. | 6.6 | 26 | | 45 | Mechanistic Studies of Single-Step Styrene Production Using a Rhodium(I) Catalyst. Journal of the American Chemical Society, 2017, 139, 1485-1498. | 6.6 | 36 | | 46 | BrÃ, nsted acid-catalysed intramolecular hydroamination of unactivated alkenes: metal triflates as an in situ source of triflic acid. Dalton Transactions, 2017, 46, 2884-2891. | 1.6 | 33 | | 47 | Studies of the decomposition of the ethylene hydrophenylation catalyst TpRu(CO)(NCMe)Ph. Journal of Organometallic Chemistry, 2017, 847, 289-293. | 0.8 | 4 | | 48 | Catalytic Synthesis of "Super―Linear Alkenyl Arenes Using an Easily Prepared Rh(I) Catalyst. Journal of the American Chemical Society, 2017, 139, 5474-5480. | 6.6 | 36 | | 49 | Oxidative Hydrophenylation of Ethylene Using a Cationic Ru(II) Catalyst: Styrene Production with Ethylene as the Oxidant. Israel Journal of Chemistry, 2017, 57, 1037-1046. | 1.0 | 15 | | 50 | Electrochemical Reduction of Carbon Dioxide to Syngas and Formate at Dendritic Copper–Indium Electrocatalysts. ACS Catalysis, 2017, 7, 5381-5390. | 5.5 | 166 | | 51 | Electrophilic RhI catalysts for arene H/D exchange in acidic media: Evidence for an electrophilic aromatic substitution mechanism. Journal of Molecular Catalysis A, 2017, 426, 381-388. | 4.8 | 14 | | 52 | Combined Furan C–H Activation and Furyl Ring-Opening by an Iron(II) Complex. Organometallics, 2016, 35, 1978-1985. | 1.1 | 9 | | 53 | Transition Metal Mediated C–H Activation and Functionalization: The Role of Poly(pyrazolyl)borate and Poly(pyrazolyl)alkane Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 2296-2311. | 1.0 | 22 | | 54 | Transition-Metal-Mediated Nucleophilic Aromatic Substitution with Acids. Organometallics, 2016, 35, 2053-2056. | 1.1 | 17 | | # | Article | IF | Citations | |----|--|--------------|-----------| | 55 | Aerobic Epoxidation of Olefin by Platinum Catalysts Supported on Mesoporous Silica Nanoparticles. ACS Catalysis, 2016, 6, 4584-4593. | 5 . 5 | 28 | | 56 | Organometallic Complexes Anchored to Conductive Carbon for Electrocatalytic Oxidation of Methane at Low Temperature. Journal of the American Chemical Society, 2016, 138, 116-125. | 6.6 | 34 | | 57 | Synthesis of RhIIIAnilido, Hydroxide, and Methoxide Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 1041-1052. | 1.0 | 5 | | 58 | Proton or Metal? The H/D Exchange of Arenes in Acidic Solvents. ACS Catalysis, 2015, 5, 769-775. | 5.5 | 54 | | 59 | Partial oxidation of light alkanes by periodate and chloride salts. Dalton Transactions, 2015, 44, 5294-5298. | 1.6 | 21 | | 60 | A rhodium catalyst for single-step styrene production from benzene and ethylene. Science, 2015, 348, 421-424. | 6.0 | 94 | | 61 | Phosphine and N-heterocyclic carbene ligands on Pt(II) shift selectivity from ethylene hydrophenylation toward benzene vinylation. Journal of Organometallic Chemistry, 2015, 793, 248-255. | 0.8 | 6 | | 62 | Rhodium Bis(quinolinyl)benzene Complexes for Methane Activation and Functionalization. Chemistry - A European Journal, 2015, 21, 1286-1293. | 1.7 | 24 | | 63 | Arene C–H activation using Rh(<scp>i</scp>) catalysts supported by bidentate nitrogen chelates.
Catalysis Science and Technology, 2015, 5, 96-100. | 2.1 | 25 | | 64 | Reductive Functionalization of a Rhodium(III)–Methyl Bond in Acidic Media: Key Step in the Electrophilic Functionalization of Methane. Organometallics, 2014, 33, 6504-6510. | 1.1 | 22 | | 65 | Theoretical Study of Reductive Functionalization of Methyl Ligands of Group 9 Complexes Supported by Two Bipyridyl Ligands: A Key Step in Catalytic Hydrocarbon Functionalization. Organometallics, 2014, 33, 1936-1944. | 1.1 | 15 | | 66 | C–H Activation of Pyrazolyl Ligands by Ru(II). Inorganic Chemistry, 2014, 53, 6270-6279. | 1.9 | 22 | | 67 | Density Functional Theory Study of Oxygen-Atom Insertion into Metal–Methyl Bonds of Iron(II), Ruthenium(II), and Osmium(II) Complexes: Study of Metal-Mediated C–O Bond Formation. Inorganic Chemistry, 2014, 53, 2968-2975. | 1.9 | 16 | | 68 | DFT Virtual Screening Identifies Rhodium–Amidinate Complexes As Potential Homogeneous Catalysts for Methane-to-Methanol Oxidation. ACS Catalysis, 2014, 4, 4455-4465. | 5.5 | 24 | | 69 | Long-Range C–H Bond Activation by Rh ^{III} -Carboxylates. Journal of the American Chemical Society, 2014, 136, 14690-14693. | 6.6 | 27 | | 70 | Metal-free amidation of ether sp3 C–H bonds with sulfonamides using PhI(OAc)2. RSC Advances, 2014, 4, 47951-47957. | 1.7 | 23 | | 71 | Reductive functionalization of a rhodium(iii)–methyl bond by electronic modification of the supporting ligand. Dalton Transactions, 2014, 43, 8273. | 1.6 | 26 | | 72 | Hydrophenylation of ethylene using a cationic Ru(<scp>ii</scp>) catalyst: comparison to a neutral Ru(<scp>ii</scp>) catalyst. Chemical Science, 2014, 5, 4355-4366. | 3.7 | 37 | | # | Article | IF | CITATIONS | |----|--|--------------------|--------------------| | 73 | Oxy-functionalization of Group 9 and 10 transition metal methyl ligands: use of pyridine-based hemi-labile ligands. Dalton Transactions, 2014, 43, 7608-7614. | 1.6 | 9 | | 74 | Polymers for the stabilization and delivery of proteins topically and per os to the insect hemocoel through conjugation with aliphatic polyethylene glycol. Pesticide Biochemistry and Physiology, 2014, 115, 58-66. | 1.6 | 3 | | 75 | 1,2-Addition of Dihydrogen across Rhodium(III)–OMe Bonds. Inorganic Chemistry, 2014, 53, 5328-5340. | 1.9 | 7 | | 76 | Selective CH Functionalization of Methane, Ethane, and Propane by a Perfluoroarene Iodine(III) Complex. Angewandte Chemie - International Edition, 2014, 53, 10490-10494. | 7.2 | 62 | | 77 | Selective Monooxidation of Light Alkanes Using Chloride and Iodate. Journal of the American Chemical Society, 2014, 136, 8393-8401. | 6.6 | 53 | | 78 | Oxygen Atom Insertion into Iron(II) Phenyl and Methyl Bonds: A Key Step for Catalytic Hydrocarbon Functionalization. Organometallics, 2014, 33, 5597-5605. | 1.1 | 13 | | 79 | Pt ^{II} -Catalyzed Hydrophenylation of α-Olefins: Variation of Linear/Branched Products as a Function of Ligand Donor Ability. ACS Catalysis, 2014, 4, 1607-1615. | 5.5 | 36 | | 80 | Activation of carbon–hydrogen bonds and dihydrogen by 1,2-CH-addition across metal–heteroatom bonds. Dalton Transactions, 2013, 42, 16646. | 1.6 | 76 | | 81 | Facile and Regioselective Câ€"H Bond Activation of Aromatic Substrates by an Fe(II) Complex Involving a Spin-Forbidden Pathway. Organometallics, 2013, 32, 1797-1806. | 1.1 | 32 | | 82 | Variable Pathways for Oxygen Atom Insertion into Metal–Carbon Bonds: The Case of Cp*W(O) ₂ (CH ₂ SiMe ₃). Journal of the American Chemical Society, 2013, 135, 424-435. | 6.6 | 28 | | 83 | Platinum(II)-Catalyzed Ethylene Hydrophenylation: Switching Selectivity between Alkyl- and Vinylbenzene Production. Organometallics, 2013, 32, 2857-2865. | 1.1 | 34 | | 84 | Pt ^{II} -Catalyzed Ethylene Hydrophenylation: Influence of Dipyridyl Chelate Ring Size on Catalyst Activity and Longevity. ACS Catalysis, 2013, 3, 1165-1171. | 5.5 | 45 | | 85 | Control of Olefin Hydroarylation Catalysis via a Sterically and Electronically Flexible Platinum(II)
Catalyst Scaffold. Organometallics, 2013, 32, 3903-3913. | 1.1 | 40 | | 86 | Pt ^{II} and Rh ^{III} Hydrocarbyl Complexes Bearing Coordinated Oxygen Atom Delivery Reagents. European Journal of Inorganic Chemistry, 2013, 2013, 4515-4525. | 1.0 | 9 | | 87 | Carbon–Oxygen Bond Formation via Organometallic Baeyer–Villiger Transformations: A
Computational Study on the Impact of Metal Identity. Journal of the American Chemical Society, 2012,
134, 2332-2339. | 6.6 | 44 | | 88 | Flavin-Catalyzed Insertion of Oxygen into Rhenium–Methyl Bonds. Journal of the American Chemical Society, 2012, 134, 12920-12923. | 6.6 | 34 | | 89 | Catalytic Hydroarylation of Ethylene Using TpRu(L)(NCMe)Ph (L =) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 5 | 50 112 Td (
1.1 | 2,6,7-Trioxa
43 | | 90 | 2012. 31. 6851-6860. Intramolecular Hydroalkoxylation and Hydroamination of Alkynes Catalyzed by Cu(I) Complexes Supported by <i>N</i> -Heterocyclic Carbene Ligands. ACS Catalysis, 2012, 2, 2182-2193. | 5.5 | 65 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 91 | DFT study of group 8 catalysts for the hydrophenylation of ethylene: Influence of ancillary ligands and metal identity. Journal of Organometallic Chemistry, 2012, 697, 15-22. | 0.8 | 10 | | 92 | Functionalization of Rhenium Aryl Bonds by O-Atom Transfer. Organometallics, 2011, 30, 2079-2082. | 1.1 | 35 | | 93 | Hyperdistorted Tungsten Allyl Complexes and Their Stereoselective Deprotonation to Form Dihapto-Coordinated Dienes. Organometallics, 2011, 30, 2587-2597. | 1.1 | 24 | | 94 | Mechanistic Studies of Ethylene Hydrophenylation Catalyzed by Bipyridyl Pt(II) Complexes. Journal of the American Chemical Society, 2011, 133, 19131-19152. | 6.6 | 76 | | 95 | Well-Defined Copper(I) Amido Complex and Aryl Iodides Reacting to Form Aryl Amines.
Organometallics, 2011, 30, 55-57. | 1.1 | 24 | | 96 | Non-redox Oxy-Insertion via Organometallic Baeyer–Villiger Transformations: A Computational Hammett Study of Platinum(II) Complexes. Organometallics, 2011, 30, 3779-3785. | 1.1 | 35 | | 97 | Chemistry in the Center for Catalytic Hydrocarbon Functionalization: An Energy Frontier Research Center. Catalysis Letters, 2011, 141, 213-221. | 1.4 | 35 | | 98 | Catalytic Oxyâ€Functionalization of Methane and Other Hydrocarbons: Fundamental Advancements and New Strategies. ChemSusChem, 2011, 4, 37-49. | 3.6 | 113 | | 99 | Transition metal catalyzed hydroarylation of olefins using unactivated substrates: Recent developments and challenges. Journal of Organometallic Chemistry, 2011, 696, 305-315. | 0.8 | 110 | | 100 | Pt(II) and Pt(IV) Amido, Aryloxide, and Hydrocarbyl Complexes: Synthesis, Characterization, and Reaction with Dihydrogen and Substrates that Possess Câ ⁻ 'H Bonds. Inorganic Chemistry, 2011, 50, 4195-4211. | 1.9 | 28 | | 101 | Net Hydrogenation of Ptâ^'NHPh Bond Is Catalyzed by Elemental Pt. Journal of the American Chemical Society, 2010, 132, 4520-4521. | 6.6 | 18 | | 102 | Ligand Lone-Pair Influence on Hydrocarbon Câ^'H Activation: A Computational Perspective. Organometallics, 2010, 29, 6801-6815. | 1.1 | 53 | | 103 | Combined experimental and computational study of W(II), Ru(II), Pt(IV) and Cu(I) amine and amido complexes using 15N NMR spectroscopy. Journal of Organometallic Chemistry, 2009, 694, 1549-1556. | 0.8 | 6 | | 104 | Ru(II) Catalysts Supported by Hydridotris(pyrazolyl)borate for the Hydroarylation of Olefins: Reaction Scope, Mechanistic Studies, and Guides for the Development of Improved Catalysts. Accounts of Chemical Research, 2009, 42, 585-597. | 7.6 | 189 | | 105 | Activation of sp ³ Carbonâ€"Hydrogen Bonds by a Ruthenium(II) Complex and Subsequent Metalâ€Mediated Cĩ£¿C and Cĩ£¿N Bond Formation. Angewandte Chemie - International Edition, 2008, 47, 726-730. | 7.2 | 37 | | 106 | Anti-Markovnikov hydroamination and hydrothiolation of electron-deficient vinylarenes catalyzed by well-defined monomeric copper(<scp>i</scp>) amido and thiolate complexes. Chemical Communications, 2008, , 111-113. | 2.2 | 95 | | 107 | Aromatic Câ^'H Activation and Catalytic Hydrophenylation of Ethylene by TpRu{P(OCH ₂) ₃ CEt}(NCMe)Ph. Organometallics, 2008, 27, 3007-3017. | 1.1 | 55 | | 108 | Preparation and Reactivity of a Monomeric Octahedral Platinum(IV) Amido Complex. Inorganic Chemistry, 2008, 47, 6124-6126. | 1.9 | 9 | | # | Article | IF | Citations | |-----|--|----------------|----------------| | 109 | Hydroarylation of Unactivated Olefins Catalyzed by Platinum(II) Complexes. Organometallics, 2008, 27, 4031-4033. | 1.1 | 77 | | 110 | Combined Experimental and Computational Studies on the Nature of Aromatic $\text{Câ}^{2}\text{H}$ Activation by Octahedral Ruthenium(II) Complexes: Evidence for If -Bond Metathesis from Hammett Studies. Organometallics, 2007, 26, 6604-6611. | 1,1 | 41 | | 111 | Comparative Reactivity of TpRu(L)(NCMe)Ph (L = CO or PMe3):Â Impact of Ancillary Ligand L on Activation of Carbonâ^'Hydrogen Bonds Including Catalytic Hydroarylation and Hydrovinylation/Oligomerization of Ethylene. Journal of the American Chemical Society, 2007, 129, 6765-6781. | 6.6 | 99 | | 112 | Activation of Carbonâ^'Hydrogen Bonds via 1,2-Addition across Mâ^'X (X = OH or NH2) Bonds of d6Transition Metals as a Potential Key Step in Hydrocarbon Functionalization:Â A Computational Study. Journal of the American Chemical Society, 2007, 129, 13172-13182. | 6.6 | 77 | | 113 | Addition of Sâ^'H Bonds across Electron-Deficient Olefins Catalyzed by Well-Defined Copper(I) Thiolate Complexes. Inorganic Chemistry, 2007, 46, 2365-2367. | 1.9 | 92 | | 114 | Combined Experimental and Computational Study of TpRu{P(pyr)3}(NCMe)Me (pyr =N-pyrrolyl):Â Interand Intramolecular Activation of Câ^'H Bonds and the Impact of Sterics on Catalytic Hydroarylation of Olefins. Organometallics, 2007, 26, 5507-5516. | 1,1 | 50 | | 115 | Addition of Nâ^'H and Oâ^'H Bonds of Amines and Alcohols to Electron-Deficient Olefins Catalyzed by Monomeric Copper(I) Systems: Reaction Scope, Mechanistic Details, and Comparison of Catalyst Efficiency. Organometallics, 2007, 26, 1483-1493. | 1.1 | 131 | | 116 | Reactivity of Ruthenium(II) and Copper(I) Complexes that Possess Anionic Heteroatomic Ligands:
Synthetic Exploitation of Nucleophilicity and Basicity of Amido, Hydroxo, Alkoxo, and Aryloxo Ligands
for the Activation of Substrates that Possess Polar Bonds as well as Nonpolar C–H and H–H Bonds.
European Journal of Inorganic Chemistry, 2007, 2007, 1185-1203. | 1.0 | 65 | | 117 | Reactivity of TpRu(L)(NCMe)R (L=CO, PMe3; R=Me, Ph) systems with isonitriles: Experimental and computational studies toward the intra- and intermolecular hydroarylation of isonitriles. Journal of Organometallic Chemistry, 2007, 692, 2175-2186. | 0.8 | 15 | | 118 | Hydrogenâ^'Deuterium Exchange between TpRu(PMe3)(L)X (L = PMe3and X = OH, OPh, Me, Ph, or NHPh; L =) Tj | ETQq0 0
6.6 | 0 rgBT /Overlo | | 110 | the American Chemical Society, 2006, 128, 7982-7994. | 0.0 | // | | 119 | Octahedral [TpRu(PMe3)2OR]n+ Complexes (Tp = hydridotris(pyrazolyl)borate; R = H or Ph; n = 0 or 1): Reactions at Ru(II) and Ru(III) Oxidation States with Substrates that Possess Carbonâ^'Hydrogen Bonds. Organometallics, 2006, 25, 5456-5465. | 1.1 | 29 | | 120 | Chemistry Surrounding Monomeric Copper(I) Methyl, Phenyl, Anilido, Ethoxide, and Phenoxide Complexes Supported byN-Heterocyclic Carbene Ligands:Â Reactivity Consistent with Both Early and Late Transition Metal Systems. Inorganic Chemistry, 2006, 45, 9032-9045. | 1.9 | 91 | | 121 | Reactions of a Ru(II) Phenyl Complex with Substrates that Possess Câ^'N or Câ^'O Multiple Bonds: Câ^'C Bond Formation, Nâ^'H Bond Cleavage, and Decarbonylation Reactions. Organometallics, 2006, 25, 1500-1510. | 1.1 | 26 | | 122 | Anti-Markovnikov Nâ^'H and Oâ^'H Additions to Electron-Deficient Olefins Catalyzed by Well-Defined Cu(I) Anilido, Ethoxide, and Phenoxide Systems. Journal of the American Chemical Society, 2006, 128, 1446-1447. | 6.6 | 107 | | 123 | Single-Electron Oxidation of Monomeric Copper(I) Alkyl Complexes: Evidence for Reductive Elimination through Bimolecular Formation of Alkanes. Organometallics, 2006, 25, 4097-4104. | 1.1 | 42 | | 124 | Ruthenium(II)-Mediated Carbonâ^'Carbon Bond Formation between Acetonitrile and Pyrrole:Â Combined Experimental and Computational Study. Organometallics, 2005, 24, 5015-5024. | 1.1 | 27 | | 125 | Cleavage of Xâ^'H Bonds (X = N, O, or C) by Copper(I) Alkyl Complexes To Form Monomeric Two-Coordinate Copper(I) Systems. Inorganic Chemistry, 2005, 44, 8647-8649. | 1.9 | 78 | | 126 | Evidence for the Net Addition of Arene Câ^'H Bonds across a Ru(II)â^'Hydroxide Bond. Journal of the American Chemical Society, 2005, 127, 14174-14175. | 6.6 | 112 | | # | Article | IF | CITATIONS | |-----|--|--------------------|--| | 127 | Reactions of (PCP)Ru(CO)(NHPh)(PMe3) (PCP = 2,6-(CH2PtBu2)2C6H3) with Substrates That Possess Polar Bonds. Inorganic Chemistry, 2005, 44, 2895-2907. | 1.9 | 30 | | 128 | Conversions of Ruthenium(III) Alkyl Complexes to Ruthenium(II) through Ruâ^'Calkyl Bond Homolysis. Organometallics, 2005, 24, 1301-1305. | 1.1 | 23 | | 129 | Synthesis and Reactivity of a Coordinatively Unsaturated Ruthenium(II) Parent Amido Complex: Studies of XⰒH Activation (X = H or C). Organometallics, 2004, 23, 2724-2733. | 1.1 | 109 | | 130 | Experimental and Computational Studies of Ruthenium(II)-Catalyzed Addition of Arene Câ^'H Bonds to Olefins. Organometallics, 2004, 23, 5007-5020. | 1.1 | 123 | | 131 | Reactions of TpRu(CO)(NCMe)(Me) (Tp = Hydridotris(pyrazolyl)borate) with Heteroaromatic Substrates: Stoichiometric and Catalytic Câ^'H Activation. Organometallics, 2004, 23, 5514-5523. | 1.1 | 65 | | 132 | Ruthenium(II) Anilido Complex Containing a Bisphosphine Pincer Ligand:Â Reversible Formation of Amidinate Ligands via Intramolecular Câ°N Bond Formation. Organometallics, 2004, 23, 3094-3097. | 1.1 | 16 | | 133 | Synthesis, Solid-State Crystal Structure, and Reactivity of a Monomeric Copper(I) Anilido Complex. Journal of the American Chemical Society, 2003, 125, 9435-9441. | 6.6 | 57 | | 134 | Computational Study of Methane Activation by TpRe(CO)2 and CpRe(CO)2 with a Stereoelectronic Comparison of Cyclopentadienyl and Scorpionate Ligands. Organometallics, 2003, 22, 2331-2337. | 1.1 | 71 | | 135 | Radical Polymerization of Styrene and Methyl Methacrylate with Ruthenium(II) Complexes. Organometallics, 2003, 22, 4692-4698. | 1.1 | 24 | | 136 | Octahedral Ru(II) Amido Complexes TpRu(L)(Lâ€~)(NHR) (Tp = Hydridotris(pyrazolyl)borate; L = Lâ€~ = P(OMe)3) T
Weakly Acidic Câ^3H Bonds. Inorganic Chemistry, 2003, 42, 4759-4772. | Гј ЕТQq0 0
1.9 | 0 rgBT /Ove
43 | | 137 | Addition of Arenes to Ethylene and Propene Catalyzed by Ruthenium. Journal of the American Chemical Society, 2003, 125, 7506-7507. | 6.6 | 141 | | 138 | Reactions of Ruthenium Benzylidene Complexes with Cyclic and Acyclic Imines: Oligomerization of 1-Pyrroline and Metathesis via Tautomerism. Organometallics, 2003, 22, 2291-2297. | 1.1 | 11 | | 139 | Ruthenium(II) Anilido Complexes TpRuL2(NHPh): Oxidative 4,4â€~-Aryl Coupling Reactions (Tp =) Tj ETQq1 1 0.76 | 84314 rgB
1.1 | 3T ₁ Overlo <mark>ck</mark> | | 140 | Ligand-Modulated Stereo- and Regioselective Tandem Addition Reactions of Rhenium-Bound Naphthalene. Journal of the American Chemical Society, 2002, 124, 3309-3315. | 6.6 | 32 | | 141 | Influence of Filled dï∈-Manifold and L/L†Ligands on the Structure, Basicity, and Bond Rotations of the Octahedral and d6Amido Complexes TpRu(L)(Lâ€)(NHPh) (Tp = Hydridotris(pyrazolyl)borate; L = L†=) Tj ETQq1 | 1.7 | 1. | | | Synthesis of the Rull-amildo complex (TpRu(CO)(PPh3)(NHPh)][OTf]2:(Tp £hydridotris(pyrazolyl)borate;) Tj ETQo | 40 0 0 rgB7 | [Overlock] | | 142 | computational study of RulV–imido bondingElectronic supplementary information (ESI) available: experimental procedures; Table 1 comparing calculated structural parameters for complex 2 versus data from the CSD; references. See http://www.rsc.org/suppdata/cc/b1/b110999e/. Chemical | 2.2 | 8 | | 143 | Dihapto Coordination of Aromatic Molecules by the Asymmetric π-Bases {TpRe(CO)(L)} (Tp =) Tj ETQq1 1 0.7843 2001, 20, 3661-3671. | 314 rgBT /C
1.1 | Overlock 10
43 | | 144 | Preparation of the Octahedral d6 Amido Complex TpRu(CO)(PPh3)(NHPh) (Tp =) Tj ETQq0 0 0 rgBT /Overlock 10 | Tf 50 67 To | d (Hydridotr
30 | | | 0 | 2.,, | | 9 Chemistry, 2001, 40, 6481-6486. | # | Article | IF | Citations | |-----|---|-------------------------|---------------------| | 145 | Synthesis and Reactivity of the Octahedral d6Parent Amido Complexes TpRu(L)(L)(NH2) (Tp =) Tj ETQq1 1 C | .784314 r _. | gBT /Overlock
45 | | 140 | Organometallics, 2001, 20, 5254-5256. | 1,1 | 40 | | 146 | A Promising New Dearomatization Agent: $\hat{a} \in \mathbb{Z}$ Crystal Structure, Synthesis, and Exchange Reactions of the Versatile Complex TpRe(CO)(1-methylimidazole)(\hat{b} -benzene) (Tp = Hydridotris(pyrazolyl)borate). Organometallics, 2001, 20, 1038-1040. | 1.1 | 45 | | 147 | Stereoselective Dihapto-Binding of Prochiral Aromatic Compounds by {TpRe(CO)(PMe3)}: Synthesis, Characterization, Stability, and Enantiofacial Discrimination (Tp = Hydrido(tris)pyrazolylborate). Organometallics, 2000, 19, 728-740. | 1.1 | 40 | | 148 | Comparison of the Relative Electron-Donating Abilities of Hydridotris(pyrazolyl)borate and Cyclopentadienyl Ligands:Â Different Interactions with Different Transition Metals. Organometallics, 2000, 19, 2428-2432. | 1.1 | 128 | | 149 | {TpRe(bpy)}:Â A Novel Pentaaminerhenium System That Stabilizes Both High and Low Oxidation States (Tp) Tj | ЕТQ _{Я.}] 1 0 | .784314 rgBT | | 150 | Rhenium(I) Terpyridine π-Bases: Reversible η2-Coordination of Ketones, Aldehydes, and Olefins in the Terpyridine Plane. Organometallics, 1999, 18, 573-581. | 1.1 | 28 | | 151 | Enantiofacial Discrimination in Dihapto-Coordination of Aromatic Molecules by the Chiral Ï€-Base/Ĭf-Lewis Acid {TpRe(CO)(PMe3)}. Journal of the American Chemical Society, 1999, 121, 6499-6500. | 6.6 | 30 | | 152 | Reactions of TpRe(CO)2(THF) with Aromatic Molecules (Tp = Hydridotris(pyrazolyl)borate). Journal of the American Chemical Society, 1998 , 120 , $8747-8754$. | 6.6 | 43 | | 153 | Reaction Mechanism Underlying Pd(II)-Catalyzed Oxidative Coupling of Ethylene and Benzene to Form Styrene: Identification of a Cyclic Mono-Pd $<$ sup $>$ II $<$ /sup $>$ Bis-Cu $<$ sup $>$ II $<$ /sup $>$ Complex as the Active Catalyst. Organometallics, 0, , . | 1.1 | 4 |