
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/34182/publications.pdf Version: 2024-02-01



Δροιιιλή Διτλνί

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Efficient conversion of light paraffinic naphtha to aromatics over metal-modified Mo/MFI catalysts.<br>Journal of Porous Materials, 2022, 29, 683-692.                                                                                | 2.6  | 1         |
| 2  | Enhanced light olefins production via n-pentane cracking using modified MFI catalysts. Heliyon, 2022,<br>8, e09181.                                                                                                                   | 3.2  | 5         |
| 3  | Catalytic Cracking of Crude Oil: Mini Review of Catalyst Formulations for Enhanced Selectivity to<br>Light Olefins. Energy & Fuels, 2022, 36, 5152-5166.                                                                              | 5.1  | 32        |
| 4  | Steam catalytic cracking of crude oil over novel hierarchical zeolite–containing mesoporous<br>silica–alumina core-shell catalysts. Journal of Analytical and Applied Pyrolysis, 2022, 166, 105621.                                   | 5.5  | 16        |
| 5  | Hierarchical composite catalysts of MCM-41 on zeolite Beta for conversion of heavy reformate to xylenes. Journal of Industrial and Engineering Chemistry, 2021, 98, 189-199.                                                          | 5.8  | 18        |
| 6  | Catalytic and Mechanistic Insights into Sideâ€Chain Alkenylation of Toluene with Methanol for Styrene<br>Formation. ChemistrySelect, 2021, 6, 8026-8051.                                                                              | 1.5  | 4         |
| 7  | Infrared Study of Silanol Groups on Dealuminated High Silica MFI Zeolite to Correlate Different Types<br>of Silanol Groups with Activity for Conversion of 1-Butene to Propene. Catalysis Letters, 2020, 150,<br>771-780.             | 2.6  | 10        |
| 8  | Thermal and catalytic cracking of whole crude oils at high severity. Journal of Analytical and Applied<br>Pyrolysis, 2020, 145, 104705.                                                                                               | 5.5  | 46        |
| 9  | Light Paraffinic Naphtha to BTX Aromatics over Metalâ€Modified Pt/ZSMâ€5. ChemistrySelect, 2020, 5,<br>13807-13813.                                                                                                                   | 1.5  | 12        |
| 10 | Oxidative dehydrogenation of n-butane to butadiene catalyzed by new mesoporous mixed oxides<br>NiO-(beta-Bi2O3)-Bi2SiO5/SBA-15 system. Molecular Catalysis, 2020, 488, 110893.                                                        | 2.0  | 8         |
| 11 | Molecular-Level Kinetic Modeling of Triglyceride Hydroprocessing. Energy & Fuels, 2019, 33, 7377-7384.                                                                                                                                | 5.1  | 8         |
| 12 | Elucidation of the Reaction Network for the Oxidative Dehydrogenation of Butane to Butadiene.<br>Energy & Fuels, 2019, 33, 1473-1478.                                                                                                 | 5.1  | 3         |
| 13 | Control of the Reaction Mechanism of Alkylaromatics Transalkylation by Means of Molecular<br>Confinement Effects Associated to Zeolite Channel Architecture. ACS Catalysis, 2019, 9, 5935-5946.                                       | 11.2 | 29        |
| 14 | Catalytic Upgrading of Light Naphtha to Gasoline Blending Components: A Mini Review. Energy &<br>Fuels, 2019, 33, 3828-3843.                                                                                                          | 5.1  | 46        |
| 15 | Catalytic Cracking of Light Crude Oil to Light Olefins and Naphtha over E-Cat and MFI: Microactivity<br>Test versus Advanced Cracking Evaluation and the Effect of High Reaction Temperature. Energy &<br>Fuels, 2018, 32, 6189-6199. | 5.1  | 47        |
| 16 | Catalytic Cracking of Arab Super Light Crude Oil to Light Olefins: An Experimental and Kinetic Study.<br>Energy & Fuels, 2018, 32, 2234-2244.                                                                                         | 5.1  | 34        |
| 17 | Bimetallic Biâ€Ni oxides over carbide supports for oxidative dehydrogenation of <i>n</i> â€butane:<br>Experimental and kinetic modelling. Canadian Journal of Chemical Engineering, 2018, 96, 1367-1376.                              | 1.7  | 2         |
| 18 | Molecular-Level Kinetic Modeling of Methyl Laurate: The Intrinsic Kinetics of Triglyceride<br>Hydroprocessing. Energy & Fuels, 2018, 32, 5264-5270.                                                                                   | 5.1  | 9         |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Hydroconversion of fatty acid derivative over supported Ni-Mo catalysts under low hydrogen pressure. Catalysis Today, 2018, 303, 185-190.                                                                                             | 4.4  | 27        |
| 20 | Conversion of Arabian Light Crude Oil to Light Olefins via Catalytic and Thermal Cracking. Energy<br>& Fuels, 2018, 32, 8705-8714.                                                                                                    | 5.1  | 37        |
| 21 | Catalytic cracking of 1-butene to propylene using modified H-ZSM-5 catalyst: A comparative study of surface modification and core-shell synthesis. Applied Catalysis A: General, 2017, 533, 109-120.                                  | 4.3  | 42        |
| 22 | Catalytic cracking of crude oil to light olefins and naphtha: Experimental and kinetic modeling.<br>Chemical Engineering Research and Design, 2017, 120, 121-137.                                                                     | 5.6  | 64        |
| 23 | Metathesis of 2-pentene over Mo and W supported mesoporous molecular sieves MCM-41 and SBA-15.<br>Journal of Industrial and Engineering Chemistry, 2017, 53, 119-126.                                                                 | 5.8  | 17        |
| 24 | Catalytic cracking of vacuum gasoil over -SVR, ITH, and MFI zeolites as FCC catalyst additives. Fuel<br>Processing Technology, 2017, 161, 23-32.                                                                                      | 7.2  | 31        |
| 25 | Catalytic Cracking of Light Crude Oil: Effect of Feed Mixing with Liquid Hydrocarbon Fractions.<br>Energy & Fuels, 2017, 31, 12677-12684.                                                                                             | 5.1  | 21        |
| 26 | The effect of alkylation route on ethyltoluene production over different structural types of zeolites.<br>Chemical Engineering Journal, 2016, 306, 1071-1080.                                                                         | 12.7 | 13        |
| 27 | Zinc oxide as efficient additive to cesium ion-exchanged zeolite X catalyst for side-chain alkylation of toluene with methanol. Journal of Molecular Catalysis A, 2016, 424, 98-105.                                                  | 4.8  | 33        |
| 28 | Catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives for maximizing propylene yield. Fuel, 2016, 167, 226-239.                                                                                       | 6.4  | 67        |
| 29 | Influencing the activity and selectivity of alkylaromatic catalytic transformations by varying the degree of delamination in MWW zeolites. Catalysis Science and Technology, 2016, 6, 3166-3181.                                      | 4.1  | 18        |
| 30 | Catalysis of metal supported zeolites for dealkylation–transalkylation of alkyl-aromatics. Applied<br>Catalysis A: General, 2016, 514, 154-163.                                                                                       | 4.3  | 14        |
| 31 | 25th Annual Saudi-Japan Symposium: Catalysts in Petroleum Refining and Petrochemicals, King Fahd<br>University of Petroleum and Minerals, Dhahran, Saudi Arabia, December 7–8, 2015. Catalysis Surveys<br>From Asia, 2016, 20, 59-62. | 2.6  | 1         |
| 32 | Design of an MWW zeolite catalyst for linear alkylbenzene synthesis with improved catalytic stability.<br>Catalysis Science and Technology, 2016, 6, 2715-2724.                                                                       | 4.1  | 8         |
| 33 | The effect of UTL layer connectivity in isoreticular zeolites on the catalytic performance in toluene alkylation. Catalysis Today, 2016, 277, 55-60.                                                                                  | 4.4  | 16        |
| 34 | Three-dimensional 10-ring zeolites: The activities in toluene alkylation and disproportionation.<br>Catalysis Today, 2016, 259, 97-106.                                                                                               | 4.4  | 16        |
| 35 | Kinetics of liquid phase alkylation of benzene with dodecene over mordenite. Canadian Journal of<br>Chemical Engineering, 2015, 93, 870-880.                                                                                          | 1.7  | 4         |
| 36 | Solvent-free iridium-catalyzed CO <sub>2</sub> hydrosilylation: experiments and kinetic modeling.<br>Catalysis Science and Technology, 2015, 5, 274-279.                                                                              | 4.1  | 36        |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Selective production of xylenes from alkyl-aromatics and heavy reformates over dual-zeolite catalyst.<br>Catalysis Today, 2015, 243, 118-127.                                                                                                                     | 4.4  | 13        |
| 38 | Meeting Report 24th Annual Saudi–Japan Symposium: Catalysts in Petroleum Refining & Petrochemicals,<br>King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, December 1–2, 2014. Catalysis<br>Surveys From Asia, 2015, 19, 57-60.                  | 2.6  | 0         |
| 39 | Experimental and kinetic studies of ethyltoluenes production via different alkylation reactions.<br>Chemical Engineering Research and Design, 2015, 95, 34-46.                                                                                                    | 5.6  | 8         |
| 40 | Effect of the CO2-pressure on the hydrosilylation of CO2 catalyzed by [Ir(NSiN)] species. Journal of CO2 Utilization, 2015, 12, 21-26.                                                                                                                            | 6.8  | 13        |
| 41 | Alkylation of toluene with ethanol to para-ethyltoluene over MFI zeolites: Comparative study and<br>kinetic modeling. Catalysis Today, 2015, 243, 109-117.                                                                                                        | 4.4  | 15        |
| 42 | Influence of toluene–tetramethylbenzene transalkylation on heavy aromatics conversion to xylenes.<br>Journal of Industrial and Engineering Chemistry, 2015, 21, 1077-1088.                                                                                        | 5.8  | 11        |
| 43 | Kinetics modelling of 2â€butene metathesis over tungsten oxide containing mesoporous silica catalyst.<br>Canadian Journal of Chemical Engineering, 2014, 92, 1271-1282.                                                                                           | 1.7  | 13        |
| 44 | Ethylation of Ethylbenzene with Ethanol over Mordenite-Based Catalysts: Effects of Acidity,<br>Desilication and Kinetics Analysis. International Journal of Chemical Reactor Engineering, 2014, 12,<br>487-496.                                                   | 1.1  | 1         |
| 45 | Catalytic cracking of heavy naphtha-range hydrocarbons over different zeolites structures. Fuel<br>Processing Technology, 2014, 122, 12-22.                                                                                                                       | 7.2  | 45        |
| 46 | Modification of Cs-X for styrene production by side-chain alkylation of toluene with methanol.<br>Catalysis Today, 2014, 226, 117-123.                                                                                                                            | 4.4  | 39        |
| 47 | Environmental Benign Catalysis for Linear Alkylbenzene Synthesis: A Review. Catalysis Surveys From<br>Asia, 2014, 18, 1-12.                                                                                                                                       | 2.6  | 25        |
| 48 | Selective synthesis of linear alkylbenzene by alkylation of benzene with 1-dodecene over desilicated zeolites. Catalysis Today, 2014, 227, 187-197.                                                                                                               | 4.4  | 36        |
| 49 | Homogeneous catalytic reduction of CO <sub>2</sub> with hydrosilanes. Catalysis Science and Technology, 2014, 4, 611-624.                                                                                                                                         | 4.1  | 184       |
| 50 | Silicalite-1 As Efficient Catalyst for Production of Propene from 1-Butene. ACS Catalysis, 2014, 4, 4205-4214.                                                                                                                                                    | 11.2 | 73        |
| 51 | Recent Advances in Reactions of Alkylbenzenes Over Novel Zeolites: The Effects of Zeolite Structure and Morphology. Catalysis Reviews - Science and Engineering, 2014, 56, 333-402.                                                                               | 12.9 | 148       |
| 52 | X-ray Photoelectron Spectroscopy Study of Mo–Ni/Ĵ³â€"Al2O3 Catalysts for Hydroconversion of Fatty Oil<br>Derivatives. Arabian Journal for Science and Engineering, 2014, 39, 6617-6625.                                                                           | 1.1  | 7         |
| 53 | Modified HZSM-5 as FCC additive for enhancing light olefins yield from catalytic cracking of VGO.<br>Applied Catalysis A: General, 2014, 477, 172-183.                                                                                                            | 4.3  | 60        |
| 54 | Phenomenologicalâ€based kinetics modelling of dehydrogenation of ethylbenzene to styrene over a<br>Mg <sub>3</sub> Fe <sub>0.25</sub> Mn <sub>0.25</sub> Al <sub>0.5</sub> hydrotalcite catalyst.<br>Canadian Journal of Chemical Engineering, 2013, 91, 924-935. | 1.7  | 6         |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Metathesis of 2-butene to propylene over W-mesoporous molecular sieves: A comparative study<br>between tungsten containing MCM-41 and SBA-15. Applied Catalysis A: General, 2013, 467, 224-234.                 | 4.3  | 78        |
| 56 | Kinetics Study of Ethylbenzene Alkylation with Ethanol over Medium and Large Pore Zeolites.<br>Industrial & Engineering Chemistry Research, 2013, 52, 13613-13621.                                              | 3.7  | 12        |
| 57 | Kinetics of dealkylation–transalkylation of C9 alkyl-aromatics over zeolites of different structures.<br>Chemical Engineering Research and Design, 2013, 91, 2601-2616.                                         | 5.6  | 38        |
| 58 | Catalysis of alkaline-modified mordenite for benzene alkylation of diolefin-containing dodecene for<br>linear alkylbenzene synthesis. Journal of Catalysis, 2013, 300, 81-90.                                   | 6.2  | 37        |
| 59 | Kinetics modeling of disproportionation and ethylation of ethylbenzene over HZSM-5: Effects of SiO2/Al2O3 ratio. Chemical Engineering Journal, 2013, 222, 498-511.                                              | 12.7 | 19        |
| 60 | Pathway to Ethylbenzene Formation in Side-Chain Alkylation of Toluene with Methanol Over Cesium<br>Ion-Exchanged Zeolite X. Catalysis Letters, 2013, 143, 1025-1029.                                            | 2.6  | 32        |
| 61 | Side-chain alkylation of toluene with methanol to styrene over cesium ion-exchanged zeolite X modified with metal borates. Applied Catalysis A: General, 2012, 443-444, 214-220.                                | 4.3  | 39        |
| 62 | Kinetics modeling of ethylbenzene dehydrogenation to styrene over a mesoporous alumina supported<br>iron catalyst. Chemical Engineering Journal, 2012, 207-208, 308-321.                                        | 12.7 | 32        |
| 63 | Kinetics of toluene alkylation with methanol catalyzed by pure and hybridized HZSM-5 catalysts.<br>Chemical Engineering Journal, 2012, 195-196, 276-288.                                                        | 12.7 | 67        |
| 64 | Utilization of ZSM-5/MCM-41 composite as FCC catalyst additive for enhancing propylene yield from<br>VGO cracking. Journal of Porous Materials, 2012, 19, 499-509.                                              | 2.6  | 29        |
| 65 | Conversion of heavy reformate into xylenes over mordenite-based catalysts. Chemical Engineering<br>Research and Design, 2011, 89, 2125-2135.                                                                    | 5.6  | 29        |
| 66 | Comparison studies of xylene isomerization and disproportionation reactions between SSZ-33, TNU-9, mordenite and ZSM-5 zeolite catalysts. Chemical Engineering Journal, 2011, 166, 348-357.                     | 12.7 | 48        |
| 67 | Catalytic transformation of methyl benzenes over zeolite catalysts. Applied Catalysis A: General, 2011, 394, 176-190.                                                                                           | 4.3  | 30        |
| 68 | Enhancing propylene production from catalytic cracking of Arabian Light VGO over novel zeolites as<br>FCC catalyst additives. Fuel, 2011, 90, 459-466.                                                          | 6.4  | 72        |
| 69 | Enhancing the Production of Light Olefins by Catalytic Cracking of FCC Naphtha over Mesoporous<br>ZSM-5 Catalyst. Topics in Catalysis, 2010, 53, 1387-1393.                                                     | 2.8  | 57        |
| 70 | Production of Xylenes from Toluene and 1,2,4â€Trimethylbenzene over ZSMâ€5 and Mordenite Catalysts in<br>a Fluidizedâ€Bed Reactor. Chemical Engineering and Technology, 2010, 33, 1193-1202.                    | 1.5  | 12        |
| 71 | Transalkylation of toluene with trimethylbenzenes over large-pore zeolites. Applied Catalysis A:<br>General, 2010, 377, 99-106.                                                                                 | 4.3  | 42        |
| 72 | Development of High Severity FCC Process for Maximizing Propylene Production —Catalyst<br>Development and Optimization of Reaction Conditions—. Journal of the Japan Petroleum Institute,<br>2010, 53, 336-341. | 0.6  | 4         |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Transformation of Toluene and 1,2,4-Trimethylbenzene over ZSM-5 and Mordenite Catalysts: A<br>Comprehensive Kinetic Model with Reversibility. Industrial & Engineering Chemistry Research,<br>2010, 49, 6376-6387.           | 3.7 | 35        |
| 74 | Decomposition of hydrocarbons to hydrogen and carbon. Applied Catalysis A: General, 2009, 359, 1-24.                                                                                                                         | 4.3 | 194       |
| 75 | Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts. Energy & Fuels, 2008, 22, 3612-3619.                                                                                                                | 5.1 | 12        |
| 76 | FCC Gasoline Sulfur Reduction by Additives: A Review. Petroleum Science and Technology, 2007, 25, 299-313.                                                                                                                   | 1.5 | 28        |
| 77 | 1,2,4-Trimethylbenzene Transformation Reaction Compared with its Transalkylation Reaction with<br>Toluene over USY Zeolite Catalyst. Industrial & Engineering Chemistry Research, 2007, 46,<br>4459-4467.                    | 3.7 | 29        |
| 78 | Catalytic Transformation of 1,3,5-Trimethylbenzene over a USY Zeolite Catalyst. Energy & Fuels, 2007, 21, 2499-2508.                                                                                                         | 5.1 | 24        |
| 79 | Sulfur reduction in FCC gasoline using catalyst additives. Applied Catalysis A: General, 2006, 303, 116-120.                                                                                                                 | 4.3 | 17        |
| 80 | Catalytic cracking of n-dodecane and alkyl benzenes over FCC zeolite catalysts: Time on stream and reactant converted models. Chemical Engineering and Processing: Process Intensification, 2005, 44, 1257-1268.             | 3.6 | 22        |
| 81 | Enhancement of Propylene Production in a Downer FCC Operation using a ZSM-5 Additive. Chemical Engineering and Technology, 2005, 28, 923-929.                                                                                | 1.5 | 23        |
| 82 | Kinetics of Desorption of 1,3-Diisopropylbenzene and 1,3,5-Triisopropylbenzene. 1. Diffusion in Y-Zeolite<br>Crystals by the Zero-Length-Column Method. Industrial & Engineering Chemistry Research, 2005,<br>44, 2027-2035. | 3.7 | 8         |
| 83 | Oil Refining and Products. , 2004, , 715-729.                                                                                                                                                                                |     | 19        |
| 84 | Sulfur Reduction in FCC Gasoline with a Commercial Additive: A Microactivity Study. Petroleum Science and Technology, 2003, 21, 1265-1274.                                                                                   | 1.5 | 4         |
| 85 | Experimental determination of high-severity fluidized catalytic cracking (HS-FCC) deactivation constant. Applied Catalysis A: General, 2002, 237, 71-80.                                                                     | 4.3 | 12        |
| 86 | Diffusion and reactivity of gas oil in FCC catalysts. Canadian Journal of Chemical Engineering, 2001, 79, 341-348.                                                                                                           | 1.7 | 31        |
| 87 | EFFECT OF ZSM-5 ADDITION ON PRODUCT DISTRIBUTION IN A HIGH SEVERITY FCC MODE. Petroleum Science and Technology, 2001, 19, 685-695.                                                                                           | 1.5 | 7         |
| 88 | Maximization of FCC light olefins by high severity operation and ZSM-5 addition. Catalysis Today, 2000, 60, 111-117.                                                                                                         | 4.4 | 83        |
| 89 | Processes to enhance refinery-hydrogen production. International Journal of Hydrogen Energy, 1996,<br>21, 267-271.                                                                                                           | 7.1 | 27        |
| 90 | Characterization of chromia/alumina catalysts by X-ray photoelectron spectroscopy, proton induced<br>X-ray emission and thermogravimetric analysis. Applied Catalysis A: General, 1995, 121, 203-216.                        | 4.3 | 78        |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Potentials for Diesel Fuel Production by Hydroprocessing of Middle Distillates. Energy Sources Part A<br>Recovery, Utilization, and Environmental Effects, 1992, 14, 155-167. | 0.5 | 5         |
| 92 | Ethylene dimerization and oligomerization to butene-1 and linear α-olefins. Catalysis Today, 1992, 14,<br>1-121.                                                              | 4.4 | 170       |
| 93 | ADVANCES IN THE CHEMISTRY OF CATALYTIC REFORMING OF NAPHTHA. Petroleum Science and Technology, 1991, 9, 1-23.                                                                 | 0.2 | 6         |
| 94 | The measurement of the extent of reduction of steam-reforming catalysts using thermal analysis techniques. Thermochimica Acta, 1991, 185, 73-82.                              | 2.7 | 1         |
| 95 | METHANE CONVERSION TECHNOLOGY AND ECONOMICS. Petroleum Science and Technology, 1991, 9, 137-158.                                                                              | 0.2 | 11        |
| 96 | Hydrotreatment of Light Cycle Oil by Competitive Catalysts. Bulletin Des Sociétés Chimiques Belges,<br>1991, 100, 887-895.                                                    | 0.0 | 1         |
| 97 | Thermal analysis of spent steam-reforming catalysts. Thermochimica Acta, 1989, 149, 147-156.                                                                                  | 2.7 | 4         |