List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3417897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disordered–Ordered Protein Binary Classification by Circular Dichroism Spectroscopy. Frontiers in Molecular Biosciences, 2022, 9, 863141.	1.6	18
2	BeStSel: webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Research, 2022, 50, W90-W98.	6.5	103
3	Competitive inhibition of the classical complement pathway using exogenous single-chain C1q recognition proteins. Journal of Biological Chemistry, 2022, 298, 102113.	1.6	5
4	Breakdown of supersaturation barrier links protein folding to amyloid formation. Communications Biology, 2021, 4, 120.	2.0	39
5	Cellular Chaperone Function of Intrinsically Disordered Dehydrin ERD14. International Journal of Molecular Sciences, 2021, 22, 6190.	1.8	11
6	The C-terminal tail extension of myosin 16 acts as a molten globule, including intrinsically disordered regions, and interacts with the N-terminal ankyrin. Journal of Biological Chemistry, 2021, 297, 100716.	1.6	3
7	BeStSel: From Secondary Structure Analysis to Protein Fold Prediction by Circular Dichroism Spectroscopy. Methods in Molecular Biology, 2021, 2199, 175-189.	0.4	53
8	The Single-Cell Transcriptomic Analysis of Prefrontal Pyramidal Cells and Interneurons Reveals the Neuronal Expression of Genes Encoding Antimicrobial Peptides and Immune Proteins. Frontiers in Immunology, 2021, 12, 749433.	2.2	1
9	Pathogenic D76N Variant of β2-Microglobulin: Synergy of Diverse Effects in Both the Native and Amyloid States. Biology, 2021, 10, 1197.	1.3	3
10	Highâ€ŧhroughput competitive fluorescence polarization assay reveals functional redundancy in the S100 protein family. FEBS Journal, 2020, 287, 2834-2846.	2.2	25
11	Chronic stepwise cerebral hypoperfusion differentially induces synaptic proteome changes in the frontal cortex, occipital cortex, and hippocampus in rats. Scientific Reports, 2020, 10, 15999.	1.6	8
12	Membrane Active Peptides Remove Surface Adsorbed Protein Corona From Extracellular Vesicles of Red Blood Cells. Frontiers in Chemistry, 2020, 8, 703.	1.8	10
13	Interplay of Structural Disorder and Short Binding Elements in the Cellular Chaperone Function of Plant Dehydrin ERD14. Cells, 2020, 9, 1856.	1.8	12
14	Comparison of ligand binding and conformational stability of human calmodulin with its homolog from the malaria parasite <i>Plasmodium falciparum</i> . FASEB BioAdvances, 2020, 2, 489-505.	1.3	4
15	Genetic deletion of TRPA1 receptor attenuates amyloid beta- 1-42 (Aî²1-42)-induced neurotoxicity in the mouse basal forebrain in vivo. Mechanisms of Ageing and Development, 2020, 189, 111268.	2.2	10
16	Isoelectric point-amyloid formation of $\hat{I}\pm$ -synuclein extends the generality of the solubility and supersaturation-limited mechanism. Current Research in Structural Biology, 2020, 2, 35-44.	1.1	17
17	Synaptic mitochondrial dysfunction and septin accumulation are linked to complement-mediated synapse loss in an Alzheimer's disease animal model. Cellular and Molecular Life Sciences, 2020, 77, 5243-5258.	2.4	39
18	Identification of Neuronal Pentraxins as Synaptic Binding Partners of C1q and the Involvement of NP1 in Synaptic Pruning in Adult Mice. Frontiers in Immunology, 2020, 11, 599771.	2.2	21

#	Article	IF	CITATIONS
19	Impact of the Conformational Variability of Oligopeptides on the Computational Prediction of Their CD Spectra. Journal of Physical Chemistry B, 2019, 123, 6694-6704.	1.2	7
20	Amyloid Formation under Complicated Conditions in Which β ₂ -Microglobulin Coexists with Its Proteolytic Fragments. Biochemistry, 2019, 58, 4925-4934.	1.2	3
21	Heating during agitation of β2-microglobulin reveals that supersaturation breakdown is required for amyloid fibril formation at neutral pH. Journal of Biological Chemistry, 2019, 294, 15826-15835.	1.6	20
22	Possible mechanisms of polyphosphate-induced amyloid fibril formation of β ₂ -microglobulin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12833-12838.	3.3	35
23	Ligand entry in human ileal bile acid-binding protein is mediated by histidine protonation. Scientific Reports, 2019, 9, 4825.	1.6	3
24	Directed Evolution of Canonical Loops and Their Swapping between Unrelated Serine Proteinase Inhibitors Disprove the Interscaffolding Additivity Model. Journal of Molecular Biology, 2019, 431, 557-575.	2.0	11
25	Improved Structural Estimation of Disordered Proteins by CD Spectroscopy: Method Development and Application. Biophysical Journal, 2018, 114, 587a.	0.2	0
26	Protein Fold Recognition by Circular Dichroism Spectroscopy. Biophysical Journal, 2018, 114, 174a.	0.2	3
27	Disordered Regions of Mixed Lineage Leukemia 4 (MLL4) Protein Are Capable of RNA Binding. International Journal of Molecular Sciences, 2018, 19, 3478.	1.8	9
28	Atomistic Details of Chymotrypsin Conformational Changes upon Adsorption on Silica. ACS Biomaterials Science and Engineering, 2018, 4, 4036-4050.	2.6	15
29	Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6303-6308.	3.3	133
30	Aggregation-phase diagrams of β2-microglobulin reveal temperature and salt effects on competitive formation of amyloids versus amorphous aggregates. Journal of Biological Chemistry, 2018, 293, 14775-14785.	1.6	32
31	BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Research, 2018, 46, W315-W322.	6.5	771
32	Inhibition of the LOX enzyme family members with old and new ligands. Selectivity analysis revisited. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3113-3118.	1.0	38
33	Structural insight into a partially unfolded state preceding aggregation in an intracellular lipidâ€binding protein. FEBS Journal, 2017, 284, 3637-3661.	2.2	9
34	Nuclease activity gives an edge to hostâ€defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms. FEBS Journal, 2017, 284, 3662-3683.	2.2	86
35	Structural plasticity of the <i>Salmonella</i> FliS flagellar export chaperone. FEBS Letters, 2016, 590, 1103-1113.	1.3	5
36	Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats. Brain, Behavior, and Immunity, 2016, 56, 289-309.	2.0	17

#	Article	IF	CITATIONS
37	Thioflavin T-Silent Denaturation Intermediates Support the Main-Chain-Dominated Architecture of Amyloid Fibrils. Biochemistry, 2016, 55, 3937-3948.	1.2	8
38	Amorphous Aggregation of Cytochrome <i>c</i> with Inherently Low Amyloidogenicity Is Characterized by the Metastability of Supersaturation and the Phase Diagram. Langmuir, 2016, 32, 2010-2022.	1.6	22
39	Amorphous Aggregation of Cytochrome C with Inherently low Amyloidogenicity is Characterized by the Metastability of Supersaturation and the Phase Diagram. Biophysical Journal, 2016, 110, 399a.	0.2	Ο
40	Without Binding ATP, Human Rad51 Does Not Form Helical Filaments on ssDNA. Journal of Physical Chemistry B, 2016, 120, 2165-2178.	1.2	4
41	ATP Binding is Prerequisite to the Helical Structure of Human Rad51 Presynaptic Filament. Biophysical Journal, 2015, 108, 222a.	0.2	Ο
42	Evidence-Based Structural Model of the Staphylococcal Repressor Protein: Separation of Functions into Different Domains. PLoS ONE, 2015, 10, e0139086.	1.1	16
43	Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3095-103.	3.3	1,215
44	Phosphorylation as Conformational Switch from the Native to Amyloid State: Trp-Cage as a Protein Aggregation Model. Journal of Physical Chemistry B, 2015, 119, 2946-2955.	1.2	14
45	A multiâ€pathway perspective on protein aggregation: Implications for control of the rate and extent of amyloid formation. FEBS Letters, 2015, 589, 672-679.	1.3	38
46	Effects of a reduced disulfide bond on aggregation properties of the human lgG1 CH3 domain. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1526-1535.	1.1	7
47	Supersaturation-limited and Unlimited Phase Transitions Compete to Produce the Pathway Complexity in Amyloid Fibrillation. Journal of Biological Chemistry, 2015, 290, 18134-18145.	1.6	58
48	The Role of Structural Flexibility and Stability in the Interaction of Serine Proteases with their Inhibitors. Current Protein and Peptide Science, 2015, 16, 521-531.	0.7	5
49	Heat of supersaturation-limited amyloid burst directly monitored by isothermal titration calorimetry. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6654-6659.	3.3	82
50	Cold Denaturation of α‧ynuclein Amyloid Fibrils. Angewandte Chemie - International Edition, 2014, 53, 7799-7804.	7.2	72
51	Supersaturation-limited Amyloid Fibrillation of Insulin Revealed by Ultrasonication. Journal of Biological Chemistry, 2014, 289, 18228-18238.	1.6	45
52	Improved Secondary Structure Determination and Fold Prediction by Circular Dichroism Spectroscopy. Biophysical Journal, 2013, 104, 567a.	0.2	0
53	Comparison of complexes formed by a crustacean and a vertebrate trypsin with bovine pancreatic trypsin inhibitor – the key to achieving extreme stability?. FEBS Journal, 2013, 280, 5750-5763.	2.2	11
54	Structural Stability of Rad51 Filaments of Self-Aggregates and of Presynaptic Complexes Studied by Electron Microscopy and Pressure Tuning Fluorescence Spectroscopy. Biophysical Journal, 2013, 104, 422a.	0.2	0

#	Article	IF	CITATIONS
55	Self-Association and DNA Binding of hsRad51 Studied by Pressure Perturbation Spectroscopy. Biophysical Journal, 2012, 102, 282a.	0.2	Ο
56	Single-Molecule Studies of Amyloidogenic Proteins. , 2012, , 169-210.		1
57	The Catalytic Aspartate Is Protonated in the Michaelis Complex Formed between Trypsin and an in Vitro Evolved Substrate-like Inhibitor. Journal of Biological Chemistry, 2011, 286, 3587-3596.	1.6	23
58	Reversible Heat-Induced Dissociation of β ₂ -Microglobulin Amyloid Fibrils. Biochemistry, 2011, 50, 3211-3220.	1.2	52
59	Myosin cleft closure determines the energetics of the actomyosin interaction. FASEB Journal, 2011, 25, 111-121.	0.2	19
60	Effects of Estrogen on Beta-Amyloid-Induced Cholinergic Cell Death in the Nucleus Basalis Magnocellularis. Neuroendocrinology, 2011, 93, 90-105.	1.2	20
61	Different electrophysiological actions of 24- and 72-hour aggregated amyloid-beta oligomers on hippocampal field population spike in both anesthetized and awake rats. Brain Research, 2010, 1354, 227-235.	1.1	20
62	The amyloid fibrils of the constant domain of immunoglobulin light chain. FEBS Letters, 2010, 584, 3348-3353.	1.3	20
63	Calcium-dependent Conformational Flexibility of a CUB Domain Controls Activation of the Complement Serine Protease C1r. Journal of Biological Chemistry, 2010, 285, 11863-11869.	1.6	15
64	Affinity, Avidity, and Kinetics of Target Sequence Binding to LC8 Dynein Light Chain Isoforms*. Journal of Biological Chemistry, 2010, 285, 38649-38657.	1.6	32
65	New Aspects of Lipid-Protein Interactions Revealed by Calmodulin Binding to the Lipid Mediator Sphingosylphosphorylcholine. Biophysical Journal, 2010, 98, 675a.	0.2	Ο
66	Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipidâ€protein interactions. FASEB Journal, 2010, 24, 3829-3839.	0.2	8
67	Mechanism of Lysophosphatidic Acid-Induced Amyloid Fibril Formation of β ₂ -Microglobulin <i>in Vitro</i> under Physiological Conditions. Biochemistry, 2009, 48, 5689-5699.	1.2	29
68	A Link between Hinge-Bending Domain Motions and the Temperature Dependence of Catalysis in 3-Isopropylmalate Dehydrogenase. Biophysical Journal, 2009, 96, 5003-5012.	0.2	11
69	Adjustment of conformational flexibility of glyceraldehyde-3-phosphate dehydrogenase as a means of thermal adaptation and allosteric regulation. European Biophysics Journal, 2008, 37, 1139-1144.	1.2	8
70	An Unstable Head–Rod Junction May Promote Folding into the Compact Off-State Conformation of Regulated Myosins. Journal of Molecular Biology, 2008, 375, 1434-1443.	2.0	15
71	Revisiting the mechanism of the autoactivation of the complement protease C1r in the C1 complex: Structure of the active catalytic region of C1r. Molecular Immunology, 2008, 45, 1752-1760.	1.0	41
72	Probing Conformational Plasticity of the Activation Domain of Trypsin:  The Role of Glycine Hinges. Biochemistry, 2008, 47, 1675-1684.	1.2	40

#	Article	IF	CITATIONS
73	The effect of solvent environment on the conformation and stability of human polyclonal IgG in solution. Biologicals, 2006, 34, 5-14.	0.5	64
74	Structural studies reveal that the diverse morphology of β2-microglobulin aggregates is a reflection of different molecular architectures. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1753, 108-120.	1.1	39
75	Extended Intermolecular Interactions in a Serine Protease–Canonical Inhibitor Complex Account for Strong and Highly Specific Inhibition. Journal of Molecular Biology, 2005, 350, 156-169.	2.0	43
76	Direct Measurement of the Thermodynamic Parameters of Amyloid Formation by Isothermal Titration Calorimetry. Journal of Biological Chemistry, 2004, 279, 55308-55314.	1.6	131
77	Increase in the conformational flexibility of Â2-microglobulin upon copper binding: A possible role for copper in dialysis-related amyloidosis. Protein Science, 2004, 13, 797-809.	3.1	78
78	Low Concentrations of Sodium Dodecyl Sulfate Induce the Extension of β2-Microglobulin-Related Amyloid Fibrils at a Neutral pHâ€. Biochemistry, 2004, 43, 11075-11082.	1.2	185
79	The Structure of MBL-associated Serine Protease-2 Reveals that Identical Substrate Specificities of C1s and MASP-2 are Realized Through Different Sets of Enzyme–Substrate Interactions. Journal of Molecular Biology, 2004, 342, 1533-1546.	2.0	74
80	Protein folding: could hydrophobic collapse be coupled with hydrogen-bond formation?. FEBS Letters, 2003, 536, 187-192.	1.3	46
81	Structural defects and the diagnosis of amyloidogenic propensity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6446-6451.	3.3	86
82	Remarkable Phylum Selectivity of a Schistocerca gregaria Trypsin Inhibitor: The Possible Role of Enzyme–Inhibitor Flexibility. Archives of Biochemistry and Biophysics, 2002, 398, 179-187.	1.4	26
83	Assembly and Enzymatic Properties of the Catalytic Domain of Human Complement Protease C1r. Journal of Biological Chemistry, 2001, 276, 36233-36240.	1.6	40
84	The Role of the Individual Domains in the Structure and Function of the Catalytic Region of a Modular Serine Protease, C1r. Journal of Immunology, 2001, 167, 5202-5208.	0.4	43
85	A Better Enzyme to Cope with Cold. Journal of Biological Chemistry, 2001, 276, 28121-28125.	1.6	58
86	Serum Albumin–Lipid Membrane Interaction Influencing the Uptake of Porphyrins. Archives of Biochemistry and Biophysics, 2000, 373, 261-270.	1.4	25
87	Disulfide-Linked Propeptides Stabilize the Structure of Zymogen and Mature Pancreatic Serine Proteasesâ€. Biochemistry, 1999, 38, 12248-12257.	1.2	20
88	Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7406-7411.	3.3	524
89	Effects of Serpin Binding on the Target Proteinase:Â Global Stabilization, Localized Increased Structural Flexibility, and Conserved Hydrogen Bonding at the Active Siteâ€. Biochemistry, 1997, 36, 5455-5464.	1.2	104