Paul K S Lam

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3417485/paul-k-s-lam-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 430
 22,597
 83
 126

 papers
 h-index
 g-index

 443
 25,558
 7.5
 6.94

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
430	Hybrid nanobubble-forward osmosis system for aquaculture wastewater treatment and reuse. Chemical Engineering Journal, 2022, 435, 135164	14.7	3
429	Quality assurance and quality control of solid phase extraction for PFAS in water and novel analytical techniques for PFAS analysis. <i>Chemosphere</i> , 2022 , 288, 132440	8.4	1
428	Light-assisted fermentative hydrogen production in an intimately-coupled inorganic-bio hybrid with self-assembled nanoparticles. <i>Chemical Engineering Journal</i> , 2022 , 428, 131254	14.7	1
427	Microplastic occurrence in the northern South China Sea, A case for Pre and Post cyclone analysis <i>Chemosphere</i> , 2022 , 296, 133980	8.4	1
426	Microplastics: A major source of phthalate esters in aquatic environments <i>Journal of Hazardous Materials</i> , 2022 , 432, 128731	12.8	1
425	Fluorine mass balance analysis and per- and polyfluoroalkyl substances in the atmosphere <i>Journal of Hazardous Materials</i> , 2022 , 435, 129025	12.8	1
424	Phthalate esters in seawater and sediment of the northern South China Sea: Occurrence, distribution, and ecological risks. <i>Science of the Total Environment</i> , 2021 , 151412	10.2	3
423	Determination of As species distribution and variation with time in extracted groundwater samples by on-site species separation method. <i>Science of the Total Environment</i> , 2021 , 808, 151913	10.2	0
422	Per- and polyfluoroalkyl substances (PFAS) in the Three-North Shelter Forest in northern China: First survey on the effects of forests on the behavior of PFAS <i>Journal of Hazardous Materials</i> , 2021 , 427, 128157	12.8	2
421	Occurrence and Fate of Psychiatric Pharmaceuticals in Wastewater Treatment Plants in Hong Kong: Enantiomeric Profiling and Preliminary Risk Assessment. <i>ACS ES&T Water</i> , 2021 , 1, 542-552		3
420	Disturbances in Microbial and Metabolic Communication across the Gut-Liver Axis Induced by a Dioxin-like Pollutant: An Integrated Metagenomics and Metabolomics Analysis. <i>Environmental Science & Environmental Science & Env</i>	10.3	10
419	Spatial and Temporal Distribution of Sea Salt Aerosol Mass Concentrations in the Marine Boundary Layer From the Arctic to the Antarctic. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e202	20 10 03	33892
418	Low-pressure volume retarded osmosis for removal of per- and polyfluoroalkyl substances. <i>Water Research</i> , 2021 , 194, 116929	12.5	2
417	Understanding plastic degradation and microplastic formation in the environment: A review. <i>Environmental Pollution</i> , 2021 , 274, 116554	9.3	128
416	Intracellular Hybrid Biosystem in a Protozoan to Trigger Visible-Light-Driven Photocatalysis. <i>ACS Applied Materials & Driven Photocatalysis</i> . 13, 19846-19854	9.5	O
415	Tracing human footprint and the fate of atmospheric polycyclic aromatic hydrocarbons over the Pearl River Estuary, China: Importance of particle size. <i>Science of the Total Environment</i> , 2021 , 767, 144.	267 ^{.2}	2
4 ¹ 4	Toxicity effects of hydrophilic algal lysates from Coolia tropicalis on marine medaka larvae (Oryzias melastigma). <i>Aquatic Toxicology</i> , 2021 , 234, 105787	5.1	1

413	Heavy metals in the plastispherelof marine microplastics: adsorption mechanisms and composite risk. <i>Gondwana Research</i> , 2021 ,	5.1	8
412	A Rhizobium bacterium and its population dynamics under different culture conditions of its associated toxic dinoflagellate Gambierdiscus balechii. <i>Marine Life Science and Technology</i> , 2021 , 3, 542	- 5 57	Ο
411	Characteristics of indoor dust in an industrial city: Comparison with outdoor dust and atmospheric particulates. <i>Chemosphere</i> , 2021 , 272, 129952	8.4	5
410	Occurrence and Trophodynamics of Marine Lipophilic Phycotoxins in a Subtropical Marine Food Web. <i>Environmental Science & Environmental Science & Envi</i>	10.3	1
409	Occurrence and seasonal distribution of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in different environmental compartments from areas around ski resorts in northern China. <i>Journal of Hazardous Materials</i> , 2021 , 407, 124400	12.8	6
408	Diversity, abundance, and distribution of anammox bacteria in shipping channel sediment of Hong Kong by analysis of DNA and RNA. <i>Ecotoxicology</i> , 2021 , 30, 1705-1718	2.9	О
407	Target, Nontarget, and Suspect Screening and Temporal Trends of Per- and Polyfluoroalkyl Substances in Marine Mammals from the South China Sea. <i>Environmental Science & Environmental Science & Envir</i>	10.3	21
406	Identification of potential sources of elevated PM2.5-Hg using mercury isotopes during haze events. <i>Atmospheric Environment</i> , 2021 , 247, 118203	5.3	Ο
405	Occurrence and spatial distribution of legacy and novel brominated flame retardants in seawater and sediment of the South China sea. <i>Environmental Pollution</i> , 2021 , 271, 116324	9.3	11
404	Antagonistic interaction between perfluorobutanesulfonate and probiotic on lipid and glucose metabolisms in the liver of zebrafish. <i>Aquatic Toxicology</i> , 2021 , 237, 105897	5.1	4
403	Stable Mercury Isotopes Revealing Photochemical Processes in the Marine Boundary Layer. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD034630	4.4	1
402	Constructing N, P-dually doped biochar materials from biomass wastes for high-performance bifunctional oxygen electrocatalysts. <i>Chemosphere</i> , 2021 , 278, 130508	8.4	11
401	Occurrence of retinoic acids and their metabolites in sewage and their removal efficiencies by chemically enhanced primary treatment and secondary biological treatment. <i>Chemosphere</i> , 2021 , 280, 130745	8.4	3
400	Transcriptomics reveal triphenyltin-induced molecular toxicity in the marine mussel Perna viridis. <i>Science of the Total Environment</i> , 2021 , 790, 148040	10.2	2
399	Simultaneous analysis of neutral and ionizable per- and polyfluoroalkyl substances in air. <i>Chemosphere</i> , 2021 , 280, 130607	8.4	4
398	Littoral Water in Hong Kong as a Potential Transient Habitat for Juveniles of a Temperate Deepwater Gnomefish, (Acropomatiformes: Scombropidae) <i>Zoological Studies</i> , 2021 , 60, e33	0.6	
397	Per- and Polyfluoroalkyl Substances in the Air Particles of Asia: Levels, Seasonality, and Size-Dependent Distribution. <i>Environmental Science & Environmental Science & Envir</i>	10.3	20
396	Unexpected Observations: Probiotic Administration Greatly Aggravates the Reproductive Toxicity of Perfluorobutanesulfonate in Zebrafish. <i>Chemical Research in Toxicology</i> , 2020 , 33, 1605-1608	4	5

395	Review on perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the Chinese atmospheric environment. <i>Science of the Total Environment</i> , 2020 , 737, 139804	10.2	19
394	Nationwide distribution and potential risk of bisphenol analogues in Indian waters. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 200, 110718	7	13
393	Parental exposure to perfluorobutane sulfonate disturbs the transfer of maternal transcripts and offspring embryonic development in zebrafish. <i>Chemosphere</i> , 2020 , 256, 127169	8.4	2
392	Probiotic Modulation of Lipid Metabolism Disorders Caused by Perfluorobutanesulfonate Pollution in Zebrafish. <i>Environmental Science & Environmental S</i>	10.3	20
391	Ionothermal carbonization of biomass to construct sp2/sp3 carbon interface in N-doped biochar as efficient oxygen reduction electrocatalysts. <i>Chemical Engineering Journal</i> , 2020 , 400, 125969	14.7	27
390	Interaction between hypoxia and perfluorobutane sulfonate on developmental toxicity and endocrine disruption in marine medaka embryos. <i>Aquatic Toxicology</i> , 2020 , 222, 105466	5.1	7
389	Long-term variations of phytoplankton community in relations to environmental factors in Deep Bay, China, from 1994 to 2016. <i>Marine Pollution Bulletin</i> , 2020 , 153, 111010	6.7	4
388	Uptake and Depuration Kinetics of Pacific Ciguatoxins in Orange-Spotted Grouper (). <i>Environmental Science & Environmental Sci</i>	10.3	10
387	Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes. <i>Fish and Fisheries</i> , 2020 , 21, 700-717	6	18
386	Probiotic modulation of perfluorobutanesulfonate toxicity in zebrafish: Disturbances in retinoid metabolism and visual physiology. <i>Chemosphere</i> , 2020 , 258, 127409	8.4	11
385	Characterizing ciguatoxin (CTX)- and Non-CTX-producing strains of Gambierdiscus balechii using comparative transcriptomics. <i>Science of the Total Environment</i> , 2020 , 717, 137184	10.2	7
384	Rediverting Electron Flux with an Engineered CRISPR-ddAsCpf1 System to Enhance the Pollutant Degradation Capacity of. <i>Environmental Science & Environmental Science & Environ</i>	10.3	18
383	Effects of dietary exposure to ciguatoxin P-CTX-1 on the reproductive performance in marine medaka (Oryzias melastigma). <i>Marine Pollution Bulletin</i> , 2020 , 152, 110837	6.7	8
382	Dermal exposure to particle-bound polycyclic aromatic hydrocarbons from barbecue fume as impacted by physicochemical conditions. <i>Environmental Pollution</i> , 2020 , 260, 114080	9.3	7
381	Long-term, selective production of caproate in an anaerobic membrane bioreactor. <i>Bioresource Technology</i> , 2020 , 302, 122865	11	6
380	Enantiomer-specific bioaccumulation and distribution of chiral pharmaceuticals in a subtropical marine food web. <i>Journal of Hazardous Materials</i> , 2020 , 394, 122589	12.8	17
379	Dietary administration of probiotic Lactobacillus rhamnosus modulates the neurological toxicities of perfluorobutanesulfonate in zebrafish. <i>Environmental Pollution</i> , 2020 , 265, 114832	9.3	10
378	Hemolysis associated toxicities of benthic dinoflagellates from Hong Kong waters. <i>Marine Pollution Bulletin</i> , 2020 , 155, 111114	6.7	4

377	Odor pollution due to industrial emission of volatile organic compounds: A case study in Hefei, China. <i>Journal of Cleaner Production</i> , 2020 , 246, 119075	10.3	9
376	First evaluation of legacy persistent organic pollutant contamination status of stranded Yangtze finless porpoises along the Yangtze River Basin, China. <i>Science of the Total Environment</i> , 2020 , 710, 136	4 ¹ 6.2	4
375	Intra-day microplastic variations in wastewater: A case study of a sewage treatment plant in Hong Kong. <i>Marine Pollution Bulletin</i> , 2020 , 160, 111535	6.7	19
374	Binary exposure to hypoxia and perfluorobutane sulfonate disturbs sensory perception and chromatin topography in marine medaka embryos. <i>Environmental Pollution</i> , 2020 , 266, 115284	9.3	3
373	Long-term variation in phytoplankton assemblages during urbanization: A comparative case study of Deep Bay and Mirs Bay, Hong Kong, China. <i>Science of the Total Environment</i> , 2020 , 745, 140993	10.2	3
372	Developing interim water quality criteria for emerging chemicals of concern for protecting marine life in the Greater Bay Area of South China. <i>Marine Pollution Bulletin</i> , 2020 , 161, 111792	6.7	2
371	Spatial Variability and Source Apportionment of Aliphatic Hydrocarbons in Sediments from the Typical Coal Mining Area. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2020 , 105, 230-236	2.7	
370	The effect of temperature on physiology, toxicity and toxin content of the benthic dinoflagellate Coolia malayensis from a seasonal tropical region. <i>Water Research</i> , 2020 , 185, 116264	12.5	7
369	Parental Exposure to Perfluorobutanesulfonate Impairs Offspring Development through Inheritance of Paternal Methylome. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	12
368	Occurrence of disinfection by-products in sewage treatment plants and the marine environment in Hong Kong. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 181, 404-411	7	24
367	Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in the seawater and sediment of the South China sea coastal region. <i>Chemosphere</i> , 2019 , 231, 468-477	8.4	48
366	Organic ultraviolet (UV) filters in the South China sea coastal region: Environmental occurrence, toxicological effects and risk assessment. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 181, 26-33	7	27
365	Vertical distribution of perfluoroalkyl substances in water columns around the Japan sea and the Mediterranean Sea. <i>Chemosphere</i> , 2019 , 231, 487-494	8.4	11
364	A preliminary screening of HBCD enantiomers transported by microplastics in wastewater treatment plants. <i>Science of the Total Environment</i> , 2019 , 674, 171-178	10.2	41
363	Stereoisomer-specific occurrence, distribution, and fate of chiral brominated flame retardants in different wastewater treatment systems in Hong Kong. <i>Journal of Hazardous Materials</i> , 2019 , 374, 211-	2 18 8	16
362	Assessing exposure to legacy and emerging per- and polyfluoroalkyl substances via hair - The first nationwide survey in India. <i>Chemosphere</i> , 2019 , 229, 366-373	8.4	20
361	Assessment of organophosphorus flame retardants and plasticizers in aquatic environments of China (Pearl River Delta, South China Sea, Yellow River Estuary) and Japan (Tokyo Bay). <i>Journal of Hazardous Materials</i> , 2019 , 371, 288-294	12.8	50
360	The hydro-fluctuation belt of the Three Gorges Reservoir: Source or sink of microplastics in the water?. <i>Environmental Pollution</i> , 2019 , 248, 279-285	9.3	34

359	Perfluorobutanesulfonate Exposure Skews Sex Ratio in Fish and Transgenerationally Impairs Reproduction. <i>Environmental Science & Environmental Science</i>	10.3	28
358	Occurrence and trophic transfer of aliphatic hydrocarbons in fish species from Yellow River Estuary and Laizhou Bay, China. <i>Science of the Total Environment</i> , 2019 , 696, 134037	10.2	5
357	Activation of aryl hydrocarbon receptor by dioxin directly shifts gut microbiota in zebrafish. <i>Environmental Pollution</i> , 2019 , 255, 113357	9.3	14
356	Solar-energy-facilitated CdSxSe1⊠ quantum dot bio-assembly in Escherichia coli and Tetrahymena pyriformis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6205-6212	13	12
355	An effective method for reconstructing the historical change in anthropogenic contribution to sedimentary organic matters in rivers. <i>Science of the Total Environment</i> , 2019 , 655, 968-976	10.2	5
354	Synthesis of CdSSe quantum dots in a protozoa Tetrahymena pyriformis. <i>Applied Microbiology and Biotechnology</i> , 2019 , 103, 973-980	5.7	8
353	Toxicological effects of two organic ultraviolet filters and a related commercial sunscreen product in adult corals. <i>Environmental Pollution</i> , 2019 , 245, 462-471	9.3	52
352	Seasonal occurrence and fate of chiral pharmaceuticals in different sewage treatment systems in Hong Kong: Mass balance, enantiomeric profiling, and risk assessment. <i>Water Research</i> , 2019 , 149, 607-6	6 ¹² 6 ⁵	33
351	Current analytical methodologies and gaps for per- and polyfluoroalkyl substances determination in the marine environment. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 121, 115372	14.6	17
350	Variation in microbial community structure in surface seawater from Pearl River Delta: Discerning the influencing factors. <i>Science of the Total Environment</i> , 2019 , 660, 136-144	10.2	29
349	Contamination by perfluoroalkyl substances and microbial community structure in Pearl River Delta sediments. <i>Environmental Pollution</i> , 2019 , 245, 218-225	9.3	30
348	Comparative toxicities of four benzophenone ultraviolet filters to two life stages of two coral species. <i>Science of the Total Environment</i> , 2019 , 651, 2391-2399	10.2	55
347	Phylogeny, morphology and toxicity of benthic dinoflagellates of the genus Fukuyoa (Goniodomataceae, Dinophyceae) from a subtropical reef ecosystem in the South China Sea. <i>Harmful Algae</i> , 2018 , 74, 78-97	5.3	20
346	Temporal Changes and Stereoisomeric Compositions of 1,2,5,6,9,10-Hexabromocyclododecane and 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane in Marine Mammals from the South China Sea. <i>Environmental Science & Environmental Sci</i>	10.3	23
345	FAMEs production from Scenedesmus obliquus in autotrophic, heterotrophic and mixotrophic cultures under different nitrogen conditions. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 461-468	4.2	20
344	Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit. <i>Molecular Neurobiology</i> , 2018 , 55, 6769-6787	6.2	7
343	Dysregulation of Intestinal Health by Environmental Pollutants: Involvement of the Estrogen Receptor and Aryl Hydrocarbon Receptor. <i>Environmental Science & Environmental Environ</i>	0 ^{10.3}	52
342	Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. <i>Environmental Pollution</i> , 2018 , 234, 307-317	9.3	83

341	Levels of trace elements, methylmercury and polybrominated diphenyl ethers in foraging green turtles in the South China region and their conservation implications. <i>Environmental Pollution</i> , 2018 , 234, 735-742	9.3	12
340	Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis-electrodialysis integrated system. <i>Bioresource Technology</i> , 2018 , 260, 61-67	11	41
339	Microplastic pollution in China's inland water systems: A review of findings, methods, characteristics, effects, and management. <i>Science of the Total Environment</i> , 2018 , 630, 1641-1653	10.2	188
338	Multigenerational Disruption of the Thyroid Endocrine System in Marine Medaka after a Life-Cycle Exposure to Perfluorobutanesulfonate. <i>Environmental Science & Environmental </i>	10.3	38
337	Heavy metals (As, Hg and V) and stable isotope ratios (II and III) in fish from Yellow River Estuary, China. <i>Science of the Total Environment</i> , 2018 , 613-614, 462-471	10.2	20
336	Solar-Driven Synchronous Photoelectrochemical Sulfur Recovery and Pollutant Degradation. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 9591-9595	8.3	4
335	Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish. <i>Environmental Pollution</i> , 2018 , 240, 17-26	9.3	55
334	Retention mechanisms of ash compositions on toxic elements (Sb, Se and Pb) during fluidized bed combustion. <i>Fuel</i> , 2018 , 213, 98-105	7.1	28
333	Halogenated flame retardants (HFRs) in surface sediment from the Pearl River Delta region and Mirs Bay, South China. <i>Marine Pollution Bulletin</i> , 2018 , 129, 899-904	6.7	17
332	Perfluorobutanesulfonate Exposure Causes Durable and Transgenerational Dysbiosis of Gut Microbiota in Marine Medaka. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 731-738	11	26
331	The Feasibility of Integrating the Noble Scallop Mimachlamys nobilis with Existing Fish Monoculture Farms in the South China Sea: A Bioeconomic Assessment from Hong Kong. <i>Journal of Shellfish Research</i> , 2018 , 37, 635-650	1	
330	Microplastics in the intestinal tracts of East Asian finless porpoises (Neophocaena asiaeorientalis sunameri) from Yellow Sea and Bohai Sea of China. <i>Marine Pollution Bulletin</i> , 2018 , 136, 55-60	6.7	34
329	Accumulation of perfluorobutane sulfonate (PFBS) and impairment of visual function in the eyes of marine medaka after a life-cycle exposure. <i>Aquatic Toxicology</i> , 2018 , 201, 1-10	5.1	30
328	Stereoisomer-Specific Trophodynamics of the Chiral Brominated Flame Retardants HBCD and TBECH in a Marine Food Web, with Implications for Human Exposure. <i>Environmental Science & Technology</i> , 2018 , 52, 8183-8193	10.3	36
327	Dense thiol arrays for metal@rganic frameworks: boiling water stability, Hg removal beyond 2 ppb and facile crosslinking. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 14566-14570	13	29
326	Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. <i>Science of the Total Environment</i> , 2017 , 583, 421-431	10.2	199
325	Molecular phylogeny and toxicity of harmful benthic dinoflagellates Coolia (Ostreopsidaceae, Dinophyceae) in a sub-tropical marine ecosystem: The first record from Hong Kong. <i>Marine Pollution Bulletin</i> , 2017 , 124, 878-889	6.7	18
324	Spatial distribution and removal performance of pharmaceuticals in municipal wastewater treatment plants in China. <i>Science of the Total Environment</i> , 2017 , 586, 1162-1169	10.2	70

323	Developmental toxicity and molecular responses of marine medaka (Oryzias melastigma) embryos to ciguatoxin P-CTX-1 exposure. <i>Aquatic Toxicology</i> , 2017 , 185, 149-159	5.1	19
322	Selective co-production of acetate and methane from wastewater during mesophilic anaerobic fermentation under acidic conditions. <i>Environmental Science: Water Research and Technology</i> , 2017 , 3, 720-725	4.2	5
321	Tracking historical mobility behavior and sources of lead in the 59-year sediment core from the Huaihe River using lead isotopic compositions. <i>Chemosphere</i> , 2017 , 184, 584-593	8.4	9
320	Effect of ash composition on the partitioning of arsenic during fluidized bed combustion. <i>Fuel</i> , 2017 , 204, 91-97	7.1	36
319	Occurrence, Distribution, and Fate of Organic UV Filters in Coral Communities. <i>Environmental Science & Environmental </i>	10.3	112
318	Spatial and temporal trends of short- and medium-chain chlorinated paraffins in sediments off the urbanized coastal zones in China and Japan: A comparison study. <i>Environmental Pollution</i> , 2017 , 224, 357-367	9.3	45
317	Occurrence and fate of endogenous steroid hormones, alkylphenol ethoxylates, bisphenol A and phthalates in municipal sewage treatment systems. <i>Journal of Environmental Sciences</i> , 2017 , 61, 49-58	6.4	55
316	Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China. <i>Environmental Science & Environmental Scien</i>	10.3	277
315	The impacts of suspended mariculture on coastal zones in China and the scope for Integrated Multi-Trophic Aquaculture. <i>Ecosystem Health and Sustainability</i> , 2017 , 3, 1340268	3.7	20
314	Presence of arsenic, mercury and vanadium in aquatic organisms of Laizhou Bay and their potential health risk. <i>Marine Pollution Bulletin</i> , 2017 , 125, 334-340	6.7	13
313	Responses of Periphyton to FeO Nanoparticles: A Physiological and Ecological Basis for Defending Nanotoxicity. <i>Environmental Science & Echnology</i> , 2017 , 51, 10797-10805	10.3	35
312	Tracking Dietary Sources of Short- and Medium-Chain Chlorinated Paraffins in Marine Mammals through a Subtropical Marine Food Web. <i>Environmental Science & Environmental Scie</i>	10.3	48
311	Transgenerational endocrine disruption and neurotoxicity in zebrafish larvae after parental exposure to binary mixtures of decabromodiphenyl ether (BDE-209) and lead. <i>Environmental Pollution</i> , 2017 , 230, 96-106	9.3	39
310	The retention mechanism, transformation behavior and environmental implication of trace element during co-combustion coal gangue with soybean stalk. <i>Fuel</i> , 2017 , 189, 32-38	7.1	30
309	Physiological and behavioural impacts of Pacific ciguatoxin-1 (P-CTX-1) on marine medaka (Oryzias melastigma). <i>Journal of Hazardous Materials</i> , 2017 , 321, 782-790	12.8	15
308	Acute Exposure to Pacific Ciguatoxin Reduces Electroencephalogram Activity and Disrupts Neurotransmitter Metabolic Pathways in Motor Cortex. <i>Molecular Neurobiology</i> , 2017 , 54, 5590-5603	6.2	3
307	Ciguatoxin reduces regenerative capacity of axotomized peripheral neurons and delays functional recovery in pre-exposed mice after peripheral nerve injury. <i>Scientific Reports</i> , 2016 , 6, 26809	4.9	17
306	A 59-year sedimentary record of metal pollution in the sediment core from the Huaihe River, Huainan, Anhui, China. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 23533-23545	5.1	20

305	Au Nanoparticles Decorated TiO2 Nanotube Arrays as a Recyclable Sensor for Photoenhanced Electrochemical Detection of Bisphenol A. <i>Environmental Science & Electrochemical Detection of Bisphenol A. Environmental Science & Electrochemical Detection of Bisphenol A. Electrochemical Detection of Bisphenol Detection of Bisphen</i>	10.3	97
304	Perfluoroalkyl Substances (PFASs) in Marine Mammals from the South China Sea and Their Temporal Changes 2002-2014: Concern for Alternatives of PFOS?. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 6728-36	10.3	91
303	Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 8275-85	5.1	31
302	Perfluorinated carboxylic and sulphonic acids in surface water media from the regions of Tibetan Plateau: Indirect evidence on photochemical degradation?. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2016 , 51, 63-9	2.3	13
301	Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate. <i>Algal Research</i> , 2016 , 17, 261-267	5	26
300	Endocrine Disruption throughout the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis in Marine Medaka (Oryzias melastigma) Chronically Exposed to the Antifouling and Chemopreventive Agent, 3,3'-Diindolylmethane (DIM). <i>Chemical Research in Toxicology</i> , 2016 , 29, 1020-8	4	16
299	Competitive sorption of heavy metals by water hyacinth roots. Environmental Pollution, 2016, 219, 837-	8 9 1.5	42
298	Relationship of proteomic variation and toxin synthesis in the dinoflagellate Alexandrium tamarense CI01 under phosphorus and inorganic nitrogen limitation. <i>Ecotoxicology</i> , 2015 , 24, 1744-53	2.9	8
297	Boiling significantly promotes photodegradation of perfluorooctane sulfonate. <i>Chemosphere</i> , 2015 , 138, 324-7	8.4	11
296	Insights into perfluorooctane sulfonate photodegradation in a catalyst-free aqueous solution. <i>Scientific Reports</i> , 2015 , 5, 9353	4.9	54
295	Comparison of three protein extraction procedures from toxic and non-toxic dinoflagellates for proteomics analysis. <i>Ecotoxicology</i> , 2015 , 24, 1395-406	2.9	7
294	Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. <i>Water Research</i> , 2015 , 81, 294-300	12.5	56
293	Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan. <i>Journal of Hazardous Materials</i> , 2015 , 292, 180-7	12.8	83
292	Atmospheric emissions of toxic elements (As, Cd, Hg, and Pb) from brick making plants in China. <i>RSC Advances</i> , 2015 , 5, 14497-14505	3.7	4
291	Bioconcentration and transfer of the organophorous flame retardant 1,3-dichloro-2-propyl phosphate causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish larvae. <i>Environmental Science & Discourse (Samp; Technology, 2015)</i> , 49, 5123-32	10.3	143
290	Temporal Trends and Pattern Changes of Short- and Medium-Chain Chlorinated Paraffins in Marine Mammals from the South China Sea over the Past Decade. <i>Environmental Science & Environmental Science &</i>	10.3	75
289	Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 122, 565-72	7	301
288	Enhancement of FAME productivity of Scenedesmus obliquus by combining nitrogen deficiency with sufficient phosphorus supply in heterotrophic cultivation. <i>Applied Energy</i> , 2015 , 158, 348-354	10.7	32

287	Relationship between metal and polybrominated diphenyl ether (PBDE) body burden and health risks in the barnacle Balanus amphitrite. <i>Marine Pollution Bulletin</i> , 2015 , 100, 383-392	6.7	13
286	Occurrence and distribution of conventional and new classes of per- and polyfluoroalkyl substances (PFASs) in the South China Sea. <i>Journal of Hazardous Materials</i> , 2015 , 285, 389-97	12.8	73
285	Characterization of cefalexin degradation capabilities of two Pseudomonas strains isolated from activated sludge. <i>Journal of Hazardous Materials</i> , 2015 , 282, 158-64	12.8	45
284	Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish. <i>Aquatic Toxicology</i> , 2015 , 158, 108-15	5.1	126
283	Investigation on thermal and trace element characteristics during co-combustion biomass with coal gangue. <i>Bioresource Technology</i> , 2015 , 175, 454-62	11	52
282	Photodegradation of perfluorooctane sulfonate in environmental matrices. <i>Separation and Purification Technology</i> , 2015 , 151, 172-176	8.3	16
281	Environmental threats to the Three Gorges Reservoir Region: Are mutagenic and genotoxic substances important?. <i>Journal of Environmental Sciences</i> , 2015 , 38, 172-4	6.4	4
2 80	Occurrence and Ecological Risk of Halogenated Flame Retardants (HFRs) in Coastal Zones. <i>Comprehensive Analytical Chemistry</i> , 2015 , 67, 389-409	1.9	1
279	Polyphosphate during the Regreening of Chlorella vulgaris under Nitrogen Deficiency. <i>International Journal of Molecular Sciences</i> , 2015 , 16, 23355-68	6.3	12
278	Developmental exposure to the organophosphorus flame retardant tris(1,3-dichloro-2-propyl) phosphate: estrogenic activity, endocrine disruption and reproductive effects on zebrafish. <i>Aquatic Toxicology</i> , 2015 , 160, 163-71	5.1	109
277	Hepatic proteomic responses in marine medaka (Oryzias melastigma) chronically exposed to antifouling compound butenolide [5-octylfuran-2(5H)-one] or 4,5-dichloro-2-N-octyl-4-isothiazolin-3-one (DCOIT). <i>Environmental Science & Environmental Scien</i>	10.3	30
276	49, 1851-9 The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant. <i>Scientific Reports</i> , 2014 , 4, 6221	4.9	17
275	Early developmental toxicity of saxitoxin on medaka (Oryzias melastigma) embryos. <i>Toxicon</i> , 2014 , 77, 16-25	2.8	18
274	Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. <i>Bioresource Technology</i> , 2014 , 152, 241-6	11	80
273	Current levels and composition profiles of emerging halogenated flame retardants and dehalogenated products in sewage sludge from municipal wastewater treatment plants in China. <i>Environmental Science & Environmental Scien</i>	10.3	60
272	Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries. <i>Water Research</i> , 2014 , 67, 55-65	12.5	198
271	Partitioning and transformation behavior of toxic elements during circulated fluidized bed combustion of coal gangue. <i>Fuel</i> , 2014 , 135, 1-8	7.1	66
270	Distribution and assessment of Pb in the supergene environment of the Huainan Coal Mining Area, Anhui, China. <i>Environmental Monitoring and Assessment</i> , 2014 , 186, 4753-65	3.1	11

(2013-2014)

269	The environmental characteristics of usage of coal gangue in bricking-making: a case study at Huainan, China. <i>Chemosphere</i> , 2014 , 95, 274-80	8.4	89
268	Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants. <i>Water Research</i> , 2014 , 53, 58-67	12.5	145
267	Thermochemical and trace element behavior of coal gangue, agricultural biomass and their blends during co-combustion. <i>Bioresource Technology</i> , 2014 , 166, 243-51	11	64
266	Atmospheric hexachlorobenzene determined during the third China arctic research expedition: Sources and environmental fate. <i>Atmospheric Pollution Research</i> , 2014 , 5, 477-483	4.5	11
265	De novo transcriptome analysis of Perna viridis highlights tissue-specific patterns for environmental studies. <i>BMC Genomics</i> , 2014 , 15, 804	4.5	31
264	Changes of accumulation profiles from PBDEs to brominated and chlorinated alternatives in marine mammals from the South China Sea. <i>Environment International</i> , 2014 , 66, 65-70	12.9	69
263	Optimization of CO2 concentration and light intensity for biodiesel production by Chlorella vulgaris FACHB-1072 under nitrogen deficiency with phosphorus luxury uptake. <i>Journal of Applied Phycology</i> , 2014 , 26, 1631-1638	3.2	5
262	Simultaneous quantification of Pacific ciguatoxins in fish blood using liquid chromatography-tandem mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 3331-40) ^{4·4}	16
261	Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning. <i>NeuroMolecular Medicine</i> , 2013 , 15, 310-23	4.6	20
260	Inter-laboratory trials for analysis of perfluorooctanesulfonate and perfluorooctanoate in water samples: performance and recommendations. <i>Analytica Chimica Acta</i> , 2013 , 770, 111-20	6.6	18
259	Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources. <i>Science of the Total Environment</i> , 2013 , 447, 46-55	10.2	89
258	Age- and gender-related accumulation of perfluoroalkyl substances in captive Chinese alligators (Alligator sinensis). <i>Environmental Pollution</i> , 2013 , 179, 61-7	9.3	20
257	Methylmercury and trace elements in the marine fish from coasts of East China. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2013 , 48, 1491-501	2.3	14
256	Perfluoroalkyl substances and extractable organic fluorine in surface sediments and cores from Lake Ontario. <i>Environment International</i> , 2013 , 59, 389-97	12.9	83
255	Atmospheric polychlorinated biphenyls in Indian cities: levels, emission sources and toxicity equivalents. <i>Environmental Pollution</i> , 2013 , 182, 283-90	9.3	54
254	Estimating daily and diurnal variations of illicit drug use in Hong Kong: a pilot study of using wastewater analysis in an Asian metropolitan city. <i>Forensic Science International</i> , 2013 , 233, 126-32	2.6	76
253	Conventional and emerging halogenated flame retardants (HFRs) in sediment of Yangtze River Delta (YRD) region, East China. <i>Chemosphere</i> , 2013 , 93, 555-60	8.4	57
252	Distribution and fate of perfluoroalkyl substances in municipal wastewater treatment plants in economically developed areas of China. <i>Environmental Pollution</i> , 2013 , 176, 10-7	9.3	92

251	Does wet precipitation represent local and regional atmospheric transportation by perfluorinated alkyl substances?. <i>Environment International</i> , 2013 , 55, 25-32	12.9	74
250	Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. <i>Bioresource Technology</i> , 2013 , 134, 341-6	11	132
249	Detections of commercial fluorosurfactants in Hong Kong marine environment and human blood: a pilot study. <i>Environmental Science & Environmental Scie</i>	10.3	70
248	Pacific ciguatoxins in food web components of coral reef systems in the Republic of Kiribati. <i>Environmental Science & Environmental Science & Environ</i>	10.3	47
247	Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China. <i>Environmental Health Perspectives</i> , 2013 , 121, 839-46	8.4	168
246	Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in zebrafish larvae. <i>Environmental Science & Environmental Environme</i>	10.3	111
245	Polychlorinated biphenyls (PCBs) in marine fishes from China: levels, distribution and risk assessment. <i>Chemosphere</i> , 2012 , 89, 944-9	8.4	32
244	Toxicogenomic mechanisms of 6-HO-BDE-47, 6-MeO-BDE-47, and BDE-47 in E. coli. <i>Environmental Science & Environmental &</i>	10.3	37
243	Disruption of endocrine function in in vitro H295R cell-based and in in vivo assay in zebrafish by 2,4-dichlorophenol. <i>Aquatic Toxicology</i> , 2012 , 106-107, 173-81	5.1	88
242	Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. <i>Environment International</i> , 2012 , 42, 1-9	12.9	259
241	Proteomic analysis of hepatic tissue of ciguatoxin (CTX) contaminated coral reef fish Cephalopholis argus and moray eel Gymnothorax undulatus. <i>Harmful Algae</i> , 2012 , 13, 65-71	5.3	13
240	Development of theca specific antisera for the profiling of cell surface proteins in the marine toxic dinoflagellate genus Alexandrium Halim. <i>Harmful Algae</i> , 2012 , 16, 58-62	5.3	4
239	Effects of inorganic and organic nitrogen and phosphorus on the growth and toxicity of two Alexandrium species from Hong Kong. <i>Harmful Algae</i> , 2012 , 16, 89-97	5.3	32
238	Asia-Pacific mussel watch for emerging pollutants: Distribution of synthetic musks and benzotriazole UV stabilizers in Asian and US coastal waters. <i>Marine Pollution Bulletin</i> , 2012 , 64, 2211-8	6.7	110
237	Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in waterbird eggs of Hong Kong, China. <i>Chemosphere</i> , 2012 , 86, 242-7	8.4	15
236	Ecotoxicology of organofluorous compounds. <i>Topics in Current Chemistry</i> , 2012 , 308, 339-63		19
235	Trophic magnification of poly- and perfluorinated compounds in a subtropical food web. <i>Environmental Science & Environmental </i>	10.3	205
234	Urinary arsenic speciation profiles in mice subchronically exposed to low concentrations of sodium arsenate in drinking water. <i>Kaohsiung Journal of Medical Sciences</i> , 2011 , 27, 417-23	2.4	1

233	Parental transfer of polybrominated diphenyl ethers (PBDEs) and thyroid endocrine disruption in zebrafish. <i>Environmental Science & Environmental Scie</i>	10.3	144
232	Proteomic modification in gills and brains of medaka fish (Oryzias melastigma) after exposure to a sodium channel activator neurotoxin, brevetoxin-1. <i>Aquatic Toxicology</i> , 2011 , 104, 211-7	5.1	28
231	Pollution in the coastal waters of Hong Kong: case studies of the urban Victoria and Tolo Harbours. Water and Environment Journal, 2011 , 25, 387-399	1.7	7
230	Potential exposure of perfluorinated compounds to Chinese in Shenyang and Yangtze River Delta areas. <i>Environmental Chemistry</i> , 2011 , 8, 407	3.2	25
229	Atmospheric concentrations of DDTs and chlordanes measured from Shanghai, China to the Arctic Ocean during the Third China Arctic Research Expedition in 2008. <i>Atmospheric Environment</i> , 2011 , 45, 3750-3757	5.3	24
228	Levels and distribution of polybrominated diphenyl ethers (PBDEs) in marine fishes from Chinese coastal waters. <i>Chemosphere</i> , 2011 , 82, 18-24	8.4	29
227	Hexabromocyclododecanes (HBCDs) in marine fishes along the Chinese coastline. <i>Chemosphere</i> , 2011 , 82, 1662-8	8.4	43
226	Spatial distribution of ciguateric fish in the Republic of Kiribati. <i>Chemosphere</i> , 2011 , 84, 117-23	8.4	48
225	Polychlorinated biphenyls and organochlorine pesticides in local waterbird eggs from Hong Kong: risk assessment to local waterbirds. <i>Chemosphere</i> , 2011 , 83, 891-6	8.4	22
224	Partitioning of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) between water and sediment. <i>Chemosphere</i> , 2011 , 85, 731-7	8.4	138
223	Comparison of two sampling methods when studying periphyton colonization in Lam Tsuen River, Hong Kong, China. <i>Chinese Journal of Oceanology and Limnology</i> , 2011 , 29, 141-149		5
222	Validation of an accelerated solvent extraction liquid chromatography-tandem mass spectrometry method for Pacific ciguatoxin-1 in fish flesh and comparison with the mouse neuroblastoma assay. Analytical and Bioanalytical Chemistry, 2011, 400, 3165-75	4.4	48
221	Responsive two-photon induced europium emission as fluorescent indicator for paralytic shellfish saxitoxin. <i>Organic Letters</i> , 2011 , 13, 5036-9	6.2	5
220	Distribution, characteristics, and worldwide inventory of dioxins in kaolin ball clays. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	20
219	Modulation of steroidogenic gene expression and hormone synthesis in H295R cells exposed to PCP and TCP. <i>Toxicology</i> , 2011 , 282, 146-53	4.4	32
218	Assessment and distribution of antimony in soils around three coal mines, Anhui, China. <i>Journal of the Air and Waste Management Association</i> , 2011 , 61, 850-7	2.4	10
217	Flux of perfluorinated chemicals through wet deposition in Japan, the United States, and several other countries. <i>Environmental Science & Environmental Science & Environment</i>	10.3	97
216	Perfluorinated acid isomer profiling in water and quantitative assessment of manufacturing source. <i>Environmental Science & Damp; Technology</i> , 2010 , 44, 9049-54	10.3	105

215	Polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and naphthalenes in plasma of workers deployed at the World Trade Center after the collapse. <i>Environmental Science & Technology</i> , 2010 , 44, 5188-94	10.3	29
214	Atmospheric HCH concentrations over the Marine Boundary Layer from Shanghai, China to the Arctic Ocean: role of human activity and climate change. <i>Environmental Science & amp; Technology</i> , 2010 , 44, 8422-8	10.3	32
213	Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan. <i>Chemosphere</i> , 2010 , 79, 266-72	8.4	250
212	Seasonality of bioaccumulation of trace organics and lysosomal integrity in green-lipped mussel Perna viridis. <i>Science of the Total Environment</i> , 2010 , 408, 1458-65	10.2	15
211	Protein profiles in zebrafish (Danio rerio) embryos exposed to perfluorooctane sulfonate. <i>Toxicological Sciences</i> , 2009 , 110, 334-40	4.4	68
210	Evidence for the involvement of xenobiotic-responsive nuclear receptors in transcriptional effects upon perfluoroalkyl acid exposure in diverse species. <i>Reproductive Toxicology</i> , 2009 , 27, 266-277	3.4	72
209	The use of muscle burden in rabbitfish Siganus oramin for monitoring polycyclic aromatic hydrocarbons and polychlorinated biphenyls in Victoria Harbour, Hong Kong and potential human health risk. <i>Science of the Total Environment</i> , 2009 , 407, 4327-32	10.2	32
208	Concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in green-lipped mussel Perna viridis from Victoria Harbour, Hong Kong and possible human health risk. <i>Marine Pollution Bulletin</i> , 2009 , 58, 615-20	6.7	13
207	Antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria Harbour. <i>Marine Pollution Bulletin</i> , 2009 , 58, 1052-62	6.7	200
206	An organically modified silicate molecularly imprinted solid-phase microextraction device for the determination of polybrominated diphenyl ethers. <i>Analytica Chimica Acta</i> , 2009 , 633, 197-203	6.6	57
205	Biochemical responses and accumulation properties of long-chain perfluorinated compounds (PFOS/PFDA/PFOA) in juvenile chickens (Gallus gallus). <i>Archives of Environmental Contamination and Toxicology</i> , 2009 , 57, 377-86	3.2	45
204	Cloud Point Extraction of Bisphenol A from Water Utilizing Cationic Surfactant Aliquat 336. <i>Chinese Journal of Analytical Chemistry</i> , 2009 , 37, 1717-1721	1.6	15
203	Use of biomarkers in environmental monitoring. Ocean and Coastal Management, 2009, 52, 348-354	3.9	89
202	Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material. <i>Journal of Hazardous Materials</i> , 2009 , 171, 780-5	12.8	107
201	An analytical method for the determination of perfluorinated compounds in whole blood using acetonitrile and solid phase extraction methods. <i>Journal of Chromatography A</i> , 2009 , 1216, 4950-6	4.5	52
200	Comparison of total fluorine, extractable organic fluorine and perfluorinated compounds in the blood of wild and pefluorooctanoate (PFOA)-exposed rats: evidence for the presence of other organofluorine compounds. <i>Analytica Chimica Acta</i> , 2009 , 635, 108-14	6.6	36
199	Temporal trends of hexabromocyclododecanes (HBCDs) and polybrominated diphenyl ethers (PBDEs) and detection of two novel flame retardants in marine mammals from Hong Kong, South China. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	139
198	Total fluorine, extractable organic fluorine, perfluorooctane sulfonate and other related fluorochemicals in liver of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) from South China. <i>Environmental Pollution</i> , 2009 , 157, 17-23	9.3	73

(2008-2009)

197	Polybrominated, polychlorinated and monobromo-polychlorinated dibenzo-p-dioxins/dibenzofurans and dioxin-like polychlorinated biphenyls in marine surface sediments from Hong Kong and Korea. <i>Environmental Pollution</i> , 2009 , 157, 724-30	9.3	46
196	Persistent toxic substances in remote lake and coastal sediments from Svalbard, Norwegian Arctic: levels, sources and fluxes. <i>Environmental Pollution</i> , 2009 , 157, 1342-51	9.3	106
195	A survey of perfluorinated compounds in surface water and biota including dolphins from the Ganges River and in other waterbodies in India. <i>Chemosphere</i> , 2009 , 76, 55-62	8.4	117
194	Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. <i>Aquatic Toxicology</i> , 2009 , 93, 29-36	5.1	201
193	Waterborne exposure to fluorotelomer alcohol 6:2 FTOH alters plasma sex hormone and gene transcription in the hypothalamic-pituitary-gonadal (HPG) axis of zebrafish. <i>Aquatic Toxicology</i> , 2009 , 93, 131-7	5.1	72
192	Biokinetics and biotransformation of DDTs in the marine green mussels Perna viridis. <i>Aquatic Toxicology</i> , 2009 , 93, 196-204	5.1	19
191	Partitioning behavior of per- and polyfluoroalkyl compounds between pore water and sediment in two sediment cores from Tokyo Bay, Japan. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	178
190	Perfluorinated compounds in tap water from China and several other countries. <i>Environmental Science & Environmental Science & Environmental Science & Environmental Science & Environmental &</i>	10.3	238
189	Antioxidant responses to polycyclic aromatic hydrocarbons and organochlorine pesticides in green-lipped mussels (Perna viridis): do mussels "integrate" biomarker responses?. <i>Marine Pollution Bulletin</i> , 2008 , 57, 503-14	6.7	107
188	Use of the clam Asaphis deflorata as a potential indicator of organochlorine bioaccumulation in Hong Kong coastal sediments. <i>Marine Pollution Bulletin</i> , 2008 , 57, 672-80	6.7	8
187	Polycyclic musks in green-lipped mussels (Perna viridis) from Hong Kong. <i>Marine Pollution Bulletin</i> , 2008 , 57, 373-80	6.7	23
186	The use of selected genotoxicity assays in green-lipped mussels (Perna viridis): a validation study in Hong Kong coastal waters. <i>Marine Pollution Bulletin</i> , 2008 , 57, 479-92	6.7	20
185	Historical trends of organic pollutants in sediment cores from Hong Kong. <i>Marine Pollution Bulletin</i> , 2008 , 57, 758-66	6.7	39
184	Preliminary health risk assessment for polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins/furans in seafood from Guangzhou and Zhoushan, China. <i>Marine Pollution Bulletin</i> , 2008 , 57, 357-64	6.7	45
183	Measuring and monitoring persistent organic pollutants in the context of risk assessment. <i>Marine Pollution Bulletin</i> , 2008 , 57, 236-44	6.7	26
182	Induction, adaptation and recovery of lysosomal integrity in green-lipped mussel Perna viridis. <i>Marine Pollution Bulletin</i> , 2008 , 57, 467-72	6.7	8
181	Photosystem II herbicide pollution in Hong Kong and its potential photosynthetic effects on corals. <i>Marine Pollution Bulletin</i> , 2008 , 57, 473-8	6.7	24
180	The use of permeability reference compounds in biofouled semi-permeable membrane devices (SPMDs): a laboratory-based investigation. <i>Marine Pollution Bulletin</i> , 2008 , 56, 1663-7	6.7	9

179	Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. <i>Toxicology and Applied Pharmacology</i> , 2008 , 230, 23-32	4.6	271
178	Effects of 20 PBDE metabolites on steroidogenesis in the H295R cell line. <i>Toxicology Letters</i> , 2008 , 176, 230-8	4.4	102
177	Perfluorooctane sulfonate and other fluorochemicals in waterbird eggs from south China. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	53
176	Emissive terbium probe for multiphoton in vitro cell imaging. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3714-5	16.4	104
175	Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. <i>Water Research</i> , 2008 , 42, 395-403	12.5	349
174	Levels and bioaccumulation of organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) in fishes from the Pearl River estuary and Daya Bay, South China. <i>Environmental Pollution</i> , 2008 , 152, 604-11	9.3	125
173	Perfluorooctane sulfonate (PFOS) and other fluorochemicals in fish blood collected near the outfall of wastewater treatment plant (WWTP) in Beijing. <i>Environmental Pollution</i> , 2008 , 156, 1298-303	9.3	37
172	Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. <i>Chemosphere</i> , 2008 , 70, 1247-55	8.4	242
171	Synthetic polycyclic musks in Hong Kong sewage sludge. <i>Chemosphere</i> , 2008 , 71, 1241-50	8.4	40
170	Effects of fifteen PBDE metabolites, DE71, DE79 and TBBPA on steroidogenesis in the H295R cell line. <i>Chemosphere</i> , 2008 , 71, 1888-94	8.4	57
169	Accumulation of perfluorinated compounds in captive Bengal tigers (Panthera tigris tigris) and African lions (Panthera leo Linnaeus) in China. <i>Chemosphere</i> , 2008 , 73, 1649-53	8.4	17
168	Perfluorooctanesulfonate and related fluorochemicals in the Amur tiger (Panthera tigris altaica) from China. <i>Environmental Science & Environmental Sc</i>	10.3	42
167	Perfluorinated compounds and total and extractable organic fluorine in human blood samples from China. <i>Environmental Science & Environmental Science </i>	10.3	143
166	Functionalized europium nanorods for in vitro imaging. <i>Inorganic Chemistry</i> , 2008 , 47, 5190-6	5.1	68
165	Risk assessment of organohalogenated compounds in water bird eggs from South China. <i>Environmental Science & Environmental Sci</i>	10.3	44
164	DE-71-induced apoptosis involving intracellular calcium and the Bax-mitochondria-caspase protease pathway in human neuroblastoma cells in vitro. <i>Toxicological Sciences</i> , 2008 , 104, 341-51	4.4	41
163	Analysis of trifluoroacetic acid and other short-chain perfluorinated acids (C2-C4) in precipitation by liquid chromatography-tandem mass spectrometry: comparison to patterns of long-chain perfluorinated acids (C5-C18). <i>Analytica Chimica Acta</i> , 2008 , 619, 221-30	6.6	155
162	Modulation of steroidogenesis by coastal waters and sewage effluents of Hong Kong, China, using the H295R assay. <i>Environmental Science and Pollution Research</i> , 2008 , 15, 332-43	5.1	34

161	Perfluorooctane sulfonate (PFOS) and related fluorochemicals in chicken egg in China. <i>Science Bulletin</i> , 2008 , 53, 501-507		34
160	Deriving site-specific sediment quality guidelines for Hong Kong marine environments using field-based species sensitivity distributions. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 226-34	3.8	43
159	Uptake, elimination, and biotransformation of aqueous and dietary DDT in marine fish. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 2053-63	3.8	32
158	Chapter 8 Persistent Organic Pollutants in Waterbirds with Special Reference to Hong Kong and Mainland China. <i>Developments in Environmental Science</i> , 2007 , 375-429		1
157	Asian Mussel Watch Program: contamination status of polybrominated diphenyl ethers and organochlorines in coastal waters of Asian countries. <i>Environmental Science & Environmental Science & Environm</i>	10.3	116
156	Comparison of tropical and temperate freshwater animal species' acute sensitivities to chemicals: Implications for deriving safe extrapolation factors. <i>Integrated Environmental Assessment and Management</i> , 2007 , 3, 49-67	2.5	137
155	Differential expression of chicken hepatic genes responsive to PFOA and PFOS. <i>Toxicology</i> , 2007 , 237, 111-125	4.4	64
154	Determination of trace levels of total fluorine in water using combustion ion chromatography for fluorine: a mass balance approach to determine individual perfluorinated chemicals in water. Journal of Chromatography A, 2007 , 1143, 98-104	4.5	135
153	Trace analysis of total fluorine in human blood using combustion ion chromatography for fluorine: a mass balance approach for the determination of known and unknown organofluorine compounds. Journal of Chromatography A, 2007, 1154, 214-21	4.5	91
152	Solid-phase extraction-fluorimetric high performance liquid chromatographic determination of domoic acid in natural seawater mediated by an amorphous titania sorbent. <i>Analytica Chimica Acta</i> , 2007 , 583, 111-7	6.6	26
151	Biokinetics of paralytic shellfish toxins in the green-lipped mussel, Perna viridis. <i>Marine Pollution Bulletin</i> , 2007 , 54, 1068-71	6.7	16
150	The occurrence of selected antibiotics in Hong Kong coastal waters. <i>Marine Pollution Bulletin</i> , 2007 , 54, 1287-93	6.7	143
149	Isomer specific determination of hexabromocyclododecanes (HBCDs) in small cetaceans from the South China SeaLevels and temporal variation. <i>Marine Pollution Bulletin</i> , 2007 , 54, 1139-45	6.7	49
148	Distribution of perfluorinated compounds in surface seawaters between Asia and Antarctica. <i>Marine Pollution Bulletin</i> , 2007 , 54, 1813-8	6.7	84
147	Urinary arsenic methylation and porphyrin profile of C57Bl/6J mice chronically exposed to sodium arsenate. <i>Science of the Total Environment</i> , 2007 , 379, 235-43	10.2	6
146	Trace metals and organochlorines in the bamboo shark Chiloscyllium plagiosum from the southern waters of Hong Kong, China. <i>Science of the Total Environment</i> , 2007 , 376, 335-45	10.2	50
145	Urinary arsenic and porphyrin profile in C57BL/6J mice chronically exposed to monomethylarsonous acid (MMAIII) for two years. <i>Toxicology and Applied Pharmacology</i> , 2007 , 224, 89-9	9 4 .6	18
144	Modulation of steroidogenic gene expression and hormone production of H295R cells by pharmaceuticals and other environmentally active compounds. <i>Toxicology and Applied Pharmacology</i> , 2007 , 225, 142-53	4.6	52

143	Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga Chattonella marina. <i>Journal of Experimental Marine Biology and Ecology</i> , 2007 , 346, 76-86	2.1	105
142	Effects of brominated flame retardants and brominated dioxins on steroidogenesis in H295R human adrenocortical carcinoma cell line. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 764-72	3.8	41
141	The OECD Validation Program of the H295R Steroidogenesis Assay for the Identification of In Vitro Inhibitors and Inducers of Testosterone and Estradiol Production. Phase 2: Inter-Laboratory Pre-Validation Studies (8 pp). <i>Environmental Science and Pollution Research</i> , 2007 , 14 Suppl 1, 23-30	5.1	55
140	Health aspects of freshwater cyanobacterial toxins. <i>Water Science and Technology: Water Supply</i> , 2007 , 7, 193-203	1.4	3
139	Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). <i>Aquatic Toxicology</i> , 2007 , 82, 135-43	5.1	251
138	Determinations of dioxinlike activity in selected mollusks from the coast of the Bohai Sea, China, using the H4IIE-luc bioassay. <i>Ecotoxicology and Environmental Safety</i> , 2007 , 67, 157-62	7	2
137	Polybrominated diphenyl ether in the East Asian environment: a critical review. <i>Environment International</i> , 2007 , 33, 963-73	12.9	204
136	Assessment of polybrominated diphenyl ethers in eggs of waterbirds from South China. <i>Environmental Pollution</i> , 2007 , 148, 258-67	9.3	40
135	Health risk assessment for polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans, and polychlorinated naphthalenes in seafood from Guangzhou and Zhoushan, China. <i>Environmental Pollution</i> , 2007 , 148, 31-9	9.3	45
134	Risk assessment of trace elements in the stomach contents of Indo-Pacific Humpback Dolphins and Finless Porpoises in Hong Kong waters. <i>Chemosphere</i> , 2007 , 66, 1175-82	8.4	28
133	Perfluorinated compounds in the Pearl River and Yangtze River of China. <i>Chemosphere</i> , 2007 , 68, 2085	-98.4	262
132	Comparison of tropical and temperate freshwater animal species' acute sensitivities to chemicals: Implications for deriving safe extrapolation factors 2007 , 3, 49		2
131	Organochlorine insecticides in mudflats of Hong Kong, China. <i>Archives of Environmental Contamination and Toxicology</i> , 2006 , 50, 153-65	3.2	11
130	Alkaline digestion and solid phase extraction method for perfluorinated compounds in mussels and oysters from South China and Japan. <i>Archives of Environmental Contamination and Toxicology</i> , 2006 , 50, 240-8	3.2	87
129	Distribution of organochlorines in the dissolved and suspended phase of the sea-surface microlayer and seawater in Hong Kong, China. <i>Marine Pollution Bulletin</i> , 2006 , 52, 768-77	6.7	25
128	Relationships between tissue concentrations of paralytic shellfish toxins and antioxidative responses of clams, Ruditapes philippinarum. <i>Marine Pollution Bulletin</i> , 2006 , 52, 572-8	6.7	27
127	Polychlorinated biphenyls and polybrominated diphenyl ethers in surface sediments from the Yangtze River Delta. <i>Marine Pollution Bulletin</i> , 2006 , 52, 1299-304	6.7	55
126	Trace organic contamination in biota collected from the Pearl River Estuary, China: a preliminary risk assessment. <i>Marine Pollution Bulletin</i> , 2006 , 52, 1682-94	6.7	46

(2006-2006)

125	Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA). <i>Toxicological Sciences</i> , 2006 , 89, 93-107	4.4	177
124	Persistent perfluorinated acids in seafood collected from two cities of China. <i>Environmental Science</i> & amp; Technology, 2006, 40, 3736-41	10.3	173
123	Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China. <i>Environmental Science & Environmental & Envir</i>	10.3	228
122	Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China. <i>Environmental Science & Environmental & Environmental</i>	10.3	256
121	Exposure of spermatozoa to duroquinone may impair reproduction of the common carp (Cyprinus carpio) through oxidative stress. <i>Aquatic Toxicology</i> , 2006 , 77, 136-42	5.1	67
120	The uptake, distribution and elimination of paralytic shellfish toxins in mussels and fish exposed to toxic dinoflagellates. <i>Aquatic Toxicology</i> , 2006 , 80, 82-91	5.1	61
119	Primary cultured cells as sensitive in vitro model for assessment of toxicantscomparison to hepatocytes and gill epithelia. <i>Aquatic Toxicology</i> , 2006 , 80, 109-18	5.1	41
118	Distribution and transportability of hexabromocyclododecane (HBCD) in the Asia-Pacific region using skipjack tuna as a bioindicator. <i>Environmental Pollution</i> , 2006 , 144, 238-47	9.3	78
117	A preliminary risk assessment of organochlorines accumulated in fish to the Indo-Pacific humpback dolphin (Sousa chinensis) in the Northwestern waters of Hong Kong. <i>Environmental Pollution</i> , 2006 , 144, 190-6	9.3	17
116	Temporal variation and biomagnification of organohalogen compounds in finless porpoises (Neophocaena phocaenoides) from the South China Sea. <i>Environmental Pollution</i> , 2006 , 144, 516-23	9.3	60
115	Levels of trace elements in green turtle eggs collected from Hong Kong: Evidence of risks due to selenium and nickel. <i>Environmental Pollution</i> , 2006 , 144, 790-801	9.3	59
114	An assessment of the risks associated with polychlorinated biphenyls found in the stomach contents of stranded Indo-Pacific Humpback Dolphins (Sousa chinensis) and Finless Porpoises (Neophocaena phocaenoides) from Hong Kong waters. <i>Chemosphere</i> , 2006 , 63, 845-52	8.4	23
113	Effects of PCBs and MeSO2-PCBs on adrenocortical steroidogenesis in H295R human adrenocortical carcinoma cells. <i>Chemosphere</i> , 2006 , 63, 772-84	8.4	47
112	AhR-active compounds in sediments of the Haihe and Dagu Rivers, China. <i>Chemosphere</i> , 2006 , 63, 1222	-380,4	27
111	Geographical distribution of polybrominated diphenyl ethers (PBDEs) and organochlorines in small cetaceans from Asian waters. <i>Chemosphere</i> , 2006 , 64, 287-95	8.4	81
110	Trophic transfer of paralytic shellfish toxins from clams (Ruditapes philippinarum) to gastropods (Nassarius festivus). <i>Chemosphere</i> , 2006 , 64, 1642-9	8.4	19
109	Occurrence and distribution of polybrominated diphenyl ethers (PBDEs) in the dissolved and suspended phases of the sea-surface microlayer and seawater in Hong Kong, China. <i>Chemosphere</i> , 2006 , 65, 1660-6	8.4	90
108	Ecological risk assessments of endocrine disrupting organotin compounds using marine neogastropods in Hong Kong. <i>Chemosphere</i> , 2006 , 65, 922-38	8.4	66

107	Measurement of estrogenic activity in sediments from Haihe and Dagu River, China. <i>Environment International</i> , 2006 , 32, 676-81	12.9	39
106	Identification and characterization of a "biomarker of toxicity" from the proteome of the paralytic shellfish toxin-producing dinoflagellate Alexandrium tamarense (Dinophyceae). <i>Proteomics</i> , 2006 , 6, 654-66	4.8	42
105	Perfluorinated compounds in streams of the Shihwa Industrial Zone and Lake Shihwa, South Korea. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 2374-80	3.8	120
104	Application of solid phase microextraction in the determination of paralytic shellfish poisoning toxins. <i>Analyst, The</i> , 2005 , 130, 1524-9	5	10
103	Deriving sediment quality guidelines from field-based species sensitivity distributions. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	79
102	Pollution monitoring in Southeast Asia using biomarkers in the mytilid mussel Perna viridis (Mytilidae: Bivalvia). <i>Environment International</i> , 2005 , 31, 121-32	12.9	103
101	Human health risk assessment of organochlorines associated with fish consumption in a coastal city in China. <i>Environmental Pollution</i> , 2005 , 136, 155-65	9.3	165
100	Risk to breeding success of waterbirds by contaminants in Hong Kong: evidence from trace elements in eggs. <i>Environmental Pollution</i> , 2005 , 135, 481-90	9.3	51
99	Global pollution monitoring of polychlorinated dibenzo-p-dioxins (PCDDs), furans (PCDFs) and coplanar polychlorinated biphenyls (coplanar PCBs) using skipjack tuna as bioindicator. <i>Environmental Pollution</i> , 2005 , 136, 303-13	9.3	54
98	Identification of a new Irgarol-1051 related s-triazine species in coastal waters. <i>Environmental Pollution</i> , 2005 , 136, 221-30	9.3	33
97	Cultured gill epithelial cells from tilapia (Oreochromis niloticus): a new in vitro assay for toxicants. <i>Aquatic Toxicology</i> , 2005 , 71, 61-72	5.1	7
96	Uptake and depuration of paralytic shellfish toxins in the green-lipped mussel, Perna viridis: a dynamic model. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 129-35	3.8	28
95	Comparative effects of the blue green algae Nodularia spumigena and a lysed extract on detoxification and antioxidant enzymes in the green lipped mussel (Perna viridis). <i>Marine Pollution Bulletin</i> , 2005 , 51, 1026-33	6.7	22
94	Field validation of antioxidant enzyme biomarkers in mussels (Perna viridis) and clams (Ruditapes philippinarum) transplanted in Hong Kong coastal waters. <i>Marine Pollution Bulletin</i> , 2005 , 51, 694-707	6.7	70
93	Modeling of depuration of paralytic shellfish toxins in Chlamys nobilis and Perna viridis. <i>Marine Pollution Bulletin</i> , 2005 , 50, 474-9	6.7	4
92	Risks posed by trace organic contaminants in coastal sediments in the Pearl River Delta, China. <i>Marine Pollution Bulletin</i> , 2005 , 50, 1036-49	6.7	65
91	Polybrominated diphenyl ethers (PBDEs) and organochlorines in small cetaceans from Hong Kong waters: levels, profiles and distribution. <i>Marine Pollution Bulletin</i> , 2005 , 51, 669-76	6.7	86
90	Polybrominated diphenyl ethers (PBDEs) in sediments and mussel tissues from Hong Kong marine waters. <i>Marine Pollution Bulletin</i> , 2005 , 50, 1173-84	6.7	129

(2004-2005)

ng 6.7	26
h 6.7	261
n 6.7	11
6.7	76
3.2	11
4.8	41
10.2	41
6.7	38
6.7	18
2 6.7	96
ne 6.7	68
3.8	20
-70 6.6	25
/, 10.3	17
10.3	145
4.4	17
8.4	39
	6.7 6.7 6.7 6.7 6.7 3.2 4.8 10.2 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7

71	Whole-mount in situ TUNEL method revealed ectopic pattern of apoptosis in cadmium treated naupliar larvae of barnacle (Balanus amphitrite Darwin). <i>Chemosphere</i> , 2004 , 55, 1387-94	8.4	7
70	Petroleum hydrocarbons and polycyclic aromatic hydrocarbons in the surficial sediments of Xiamen Harbour and Yuan Dan Lake, China. <i>Chemosphere</i> , 2004 , 56, 107-12	8.4	77
69	A preliminary risk assessment of trace elements accumulated in fish to the Indo-Pacific Humpback dolphin (Sousa chinensis) in the northwestern waters of Hong Kong. <i>Chemosphere</i> , 2004 , 56, 643-51	8.4	37
68	Mussel-based monitoring of trace metal and organic contaminants along the east coast of China using Perna viridis and Mytilus edulis. <i>Environmental Pollution</i> , 2004 , 127, 203-16	9.3	126
67	Antioxidant responses to benzo[a]pyrene and Aroclor 1254 exposure in the green-lipped mussel, Perna viridis. <i>Environmental Pollution</i> , 2004 , 128, 393-403	9.3	91
66	Application of the comet and micronucleus assays to the detection of B[a]P genotoxicity in haemocytes of the green-lipped mussel (Perna viridis). <i>Aquatic Toxicology</i> , 2004 , 66, 381-92	5.1	110
65	Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. <i>Environmental Science & Environmental Scienc</i>	10.3	329
64	Global pollution monitoring of butyltin compounds using skipjack tuna as a bioindicator. <i>Environmental Pollution</i> , 2004 , 127, 1-12	9.3	52
63	Field depuration and biotransformation of paralytic shellfish toxins in scallop Chlamys nobilis and green-lipped mussel Perna viridis. <i>Marine Biology</i> , 2003 , 143, 927-934	2.5	45
62	Global pollution monitoring of PCBs and organochlorine pesticides using skipjack tuna as a bioindicator. <i>Archives of Environmental Contamination and Toxicology</i> , 2003 , 45, 378-89	3.2	77
61	Harmonisation of polychlorinated biphenyl (PCB) analyses for ecotoxicological interpretations of southeast Asian environmental media: what's the problem?. <i>Marine Pollution Bulletin</i> , 2003 , 46, 159-70	6.7	19
60	The use of biomarkers in environmental monitoring programmes. <i>Marine Pollution Bulletin</i> , 2003 , 46, 182-6	6.7	196
59	Paralytic shellfish toxins in green-lipped mussels, Perna viridis, in Hong Kong. <i>Marine Pollution Bulletin</i> , 2003 , 46, 258-63	6.7	32
58	Fixing the wheel the carpetbaggers broke. <i>Marine Pollution Bulletin</i> , 2003 , 46, 918-20	6.7	
57	Exposure and time dependent DNA strand breakage in hepatopancreas of green-lipped mussels (Perna viridis) exposed to Aroclor 1254, and mixtures of B[a]P and Aroclor 1254. <i>Marine Pollution Bulletin</i> , 2003 , 46, 1285-93	6.7	35
56	Evaluation of biomarkers of exposure and effect in juvenile areolated grouper (Epinephelus areolatus) on foodborne exposure to benzo[a]pyrene. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 1568-1573	3.8	30
55	Aquatic hypoxia is an disrupter and impairs fish reproduction. <i>Environmental Science & Environmental </i>	10.3	257
54	Derivatisation of microcystin with a redox-active label for high-performance liquid chromatography/electrochemical detection. <i>New Journal of Chemistry</i> , 2003 , 27, 274-279	3.6	15

(2001-2003)

53	Interactions of paralytic shellfish toxins with xenobiotic-metabolizing and antioxidant enzymes in rodents. <i>Toxicon</i> , 2003 , 42, 425-31	2.8	22	
52	Risk to breeding success of fish-eating Ardeids due to persistent organic contaminants in Hong Kong: evidence from organochlorine compounds in eggs. <i>Water Research</i> , 2003 , 37, 459-67	12.5	87	
51	A comparison of polycyclic aromatic hydrocarbon and petroleum hydrocarbon uptake by mussels (Perna viridis) and semi-permeable membrane devices (SPMDs) in Hong Kong coastal waters. <i>Environmental Pollution</i> , 2003 , 122, 223-7	9.3	34	
50	. Environmental Toxicology and Chemistry, 2003 , 22, 1568	3.8	7	
49	Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in sediments from Hong Kong. <i>Marine Pollution Bulletin</i> , 2002 , 45, 372-8	6.7	43	
48	Biofouling confounds the uptake of trace organic contaminants by semi-permeable membrane devices (SPMDs). <i>Marine Pollution Bulletin</i> , 2002 , 44, 1372-9	6.7	43	
47	Risk to breeding success of Ardeids by contaminants in Hong Kong: evidence from trace metals in feathers. <i>Ecotoxicology</i> , 2002 , 11, 49-59	2.9	53	
46	Cloud-point extraction and preconcentration of cyanobacterial toxins (microcystins) from natural waters using a cationic surfactant. <i>Environmental Science & Environmental Sc</i>	10.3	39	
45	Toxicity and uptake mechanism of cylindrospermopsin and lophyrotomin in primary rat hepatocytes. <i>Toxicon</i> , 2002 , 40, 205-11	2.8	79	
44	Genotoxicity investigation of a cyanobacterial toxin, cylindrospermopsin. <i>Toxicon</i> , 2002 , 40, 1499-501	2.8	99	
43	Distribution and sources of polycyclic aromatic hydrocarbons in the sediment of a sub-tropical coastal wetland. <i>Water Research</i> , 2002 , 36, 1457-68	12.5	70	
42	Bioenergetics and RNA/DNA ratios in the common carp (Cyprinus carpio) under hypoxia. <i>Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology,</i> 2001 , 171, 49-57	2.2	62	
41	Determination of microcystins in cyanobacterial blooms by solid-phase microextraction-high-performance liquid chromatography. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 1648-1655	3.8	27	
40	Review of effects of water pollution on the breeding success of waterbirds, with particular reference to ardeids in Hong Kong. <i>Ecotoxicology</i> , 2001 , 10, 327-49	2.9	48	
39	Predicting effects of toxic chemicals in the marine environment. <i>Marine Pollution Bulletin</i> , 2001 , 42, 16	9-8 <i>3</i> ₇	34	
38	DNA adduct formation and DNA strand breaks in green-lipped mussels (Perna viridis) exposed to benzo[a]pyrene: dose- and time-dependent relationships. <i>Marine Pollution Bulletin</i> , 2001 , 42, 603-10	6.7	120	
37	Relationships between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels, Perna viridis. <i>Aquatic Toxicology</i> , 2001 , 52, 189-203	5.1	327	
36	A comparison of mussels (Perna viridis) and semi-permeable membrane devices (SPMDs) for monitoring chlorinated trace organic contaminants in Hong Kong coastal waters. <i>Chemosphere</i> , 2001 , 45, 1201-8	8.4	37	

35	Effects of cadmium on the development and swimming behavior of barnacle larvae Balanus amphitrite Darwin. <i>Environmental Toxicology</i> , 2000 , 15, 8-13	4.2	10
34	Biokinetics of cesium in Perna viridis. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 271-275	3.8	7
33	Metabolic adjustments in the common carp during prolonged hypoxia. <i>Journal of Fish Biology</i> , 2000 , 57, 1160-1171	1.9	65
32	Concentrations of Persistent Organic Pollutants in Surface Sediments of the Mudflat and Mangroves at Mai Po Marshes Nature Reserve, Hong Kong. <i>Marine Pollution Bulletin</i> , 2000 , 40, 1210-121	4 .7	67
31	Use of protein phosphatase inhibition assay to detect microcystins in Donghu Lake and a fish pond in China. <i>Chemosphere</i> , 2000 , 41, 53-8	8.4	27
30	Study on the cytotoxicity of microcystin-LR on cultured cells. <i>Chemosphere</i> , 2000 , 41, 143-7	8.4	52
29	Toxicology and risk assessment of freshwater cyanobacterial (blue-green algal) toxins in water. <i>Reviews of Environmental Contamination and Toxicology</i> , 2000 , 163, 113-85	3.5	104
28	Toxicology and evaluation of microcystins. <i>Therapeutic Drug Monitoring</i> , 2000 , 22, 69-72	3.2	7
27	Cylindrospermopsin, a cyanobacterial alkaloid: evaluation of its toxicologic activity. <i>Therapeutic Drug Monitoring</i> , 2000 , 22, 89-92	3.2	125
26	Determination of polynuclear aromatic hydrocarbons in human blood serum by proteolytic digestion direct immersion SPME. <i>Analytica Chimica Acta</i> , 1999 , 396, 303-308	6.6	35
25	Relationship between Tissue Concentrations of Polycyclic Aromatic Hydrocarbons and DNA Adducts in Green-Lipped Mussels (Perna viridis). <i>Ecotoxicology</i> , 1999 , 8, 73-82	2.9	41
24	A Comparison of Growth Biomarkers for Assessing Sublethal Effects of Cadmium on a Marine Gastropod, Nassarius festivus. <i>Marine Pollution Bulletin</i> , 1999 , 39, 165-173	6.7	25
23	Development of a Capillary Zone Electrophoretic Method for the Rapid Separation and Detection of Hepatotoxic Microcystins. <i>Marine Pollution Bulletin</i> , 1999 , 39, 250-254	6.7	22
22	Toxic Effects of Cadmium on Fertilizing Capability of Spermatozoa, Dynamics of the First Cleavage and Pluteus Formation in the Sea Urchin Anthocidaris crassispina (Agassiz). <i>Marine Pollution Bulletin</i> , 1999 , 38, 1097-1104	6.7	24
21	Individual and combined effects of cadmium and copper on the growth response of Chlorella vulgaris. <i>Environmental Toxicology</i> , 1999 , 14, 347-353	4.2	17
20	Effects of microcystins on phosphorylase-a binding to phosphatase-2A: kinetic analysis by surface plasmon resonance biosensor. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1999 , 1427, 62-73	4	9
19	A colorimetric assay for screening microcystin class compounds in aquatic systems. <i>Chemosphere</i> , 1999 , 38, 1113-1122	8.4	19
18	Determination of polychlorinated biphenyls in human blood serum by SPME. <i>Chemosphere</i> , 1999 , 39, 905-12	8.4	21

LIST OF PUBLICATIONS

17	Occurrence of persistent organic contaminants and related substances in Hong Kong marine areas: An overview. <i>Marine Pollution Bulletin</i> , 1998 , 36, 376-384	6.7	66
16	Glucose-6-phosphate dehydrogenase and lactate dehydrogenase in the green-lipped mussel (Perna viridis): Possible biomarkers for hypoxia in the marine environment. <i>Water Research</i> , 1997 , 31, 2797-28	30 ^{12.5}	53
15	A settlement inhibition assay with cyprid larvae of the barnacle Balanus amphitrite. <i>Chemosphere</i> , 1997 , 35, 1867-1874	8.4	24
14	Cadmium uptake and depuration in the soft tissues of Brotla hainanensis (Gastropoda: Prosobranchia: Thiaridae): A dynamic model. <i>Chemosphere</i> , 1997 , 35, 2449-2461	8.4	6
13	MAJOR PATHWAYS FOR NITROGEN REMOVAL IN WASTE WATER STABILIZATION PONDS. <i>Water, Air, and Soil Pollution</i> , 1997 , 94, 125-136	2.6	
12	Effects of two oil dispersants on phototaxis and swimming behaviour of barnacle larvae. <i>Hydrobiologia</i> , 1997 , 352, 9-16	2.4	27
11	Major pathways for nitrogen removal in waste water stabilization ponds. <i>Water, Air, and Soil Pollution</i> , 1997 , 94, 125-136	2.6	12
10	A phototaxis inhibition assay using barnacle larvae. <i>Environmental Toxicology and Water Quality</i> , 1997 , 12, 231-236		12
9	Effects of cadmium on the consumption and absorption rates of a tropical freshwater snail, Radix plicatulus. <i>Chemosphere</i> , 1996 , 32, 2127-2132	8.4	7
8	Interpopulation differences in acute response of Brotia hainanensis (Gastropoda, Prosobranchia) to cadmium: genetic or environmental variance?. <i>Environmental Pollution</i> , 1996 , 94, 1-7	9.3	17
7	Impact of marine fish farming on water quality and bottom sediment: A case study in the sub-tropical environment. <i>Marine Environmental Research</i> , 1994 , 38, 115-145	3.3	145
6	Intraspecific life-history variation in Radix plicatulus (Gastropoda: Pulmonata: Lymnaeidae). <i>Journal of Zoology</i> , 1994 , 232, 435-446	2	9
5	Ecological energetics of populations of four sympatric isopods in a Hong Kong forest. <i>Journal of Tropical Ecology</i> , 1991 , 7, 475-490	1.3	6
4	Notes on the genus Sinocapritermes (Isoptera: Termitidae) from China, with description of a new species. <i>Systematic Entomology</i> , 1990 , 15, 331-334	3.4	1
3	Some observations on the life cycle and population dynamics of Talitroides topitotum (Burt) (Amphipoda: Talitridae) in Hong Kong. <i>Journal of Natural History</i> , 1989 , 23, 1087-1092	0.5	9
2	Fitness Implications of Plant-Herbivore "Mutualism". <i>Oikos</i> , 1985 , 44, 360	4	2
1	Release of Microplastics from Discarded Surgical Masks and Their Adverse Impacts on the Marine Copepod Tigriopus japonicus. <i>Environmental Science and Technology Letters</i> ,	11	12