

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3417228/publications.pdf Version: 2024-02-01

Οινι Υλιλιεί

#	Article	IF	CITATIONS
1	Reduction of Graphite Oxide with a Grignard Reagent for Facile In Situ Preparation of Electrically Conductive Polyolefin/Graphene Nanocomposites. Macromolecular Chemistry and Physics, 2012, 213, 720-728.	2.2	32
2	Spherical montmorillonite-supported nano-silver as a self-sedimentary catalyst for methylene blue removal. Applied Clay Science, 2019, 174, 146-151.	5.2	29
3	Towards mass production of Au nanoparticles supported on montmorillonite microspheres for catalytic reduction of 4-nitrophenol. Applied Clay Science, 2018, 166, 74-79.	5.2	25
4	Exfoliated Graphitic Carbon Nitride Nanosheets/Gold Nanoparticles/Spherical Montmorillonite Ternary Porous Heterostructures for the Degradation of Organic Dyes. ACS Applied Nano Materials, 2020, 3, 7847-7857.	5.0	23
5	Fabrication of Nanofillers into a Granular "Nanosupport―for Zieglerâ€Natta Catalysts: Towards Scalable in situ Preparation of Polyolefin Nanocomposites. Macromolecular Rapid Communications, 2011, 32, 1052-1059.	3.9	19
6	Nonconjugated α,ï‰-Diolefin/Propylene Copolymerization to Long Chain-Branched Polypropylene by Ziegler–Natta Catalyst: Overcoming Steric Hindrance by Introducing an Extra Electronic Pulling Effect. Macromolecules, 2018, 51, 9234-9249.	4.8	18
7	Assessing 1,9-Decadiene/Propylene Copolymerization with Ziegler-Natta Catalysts to Long-Chain-Branched Polypropylene. Industrial & Engineering Chemistry Research, 2020, 59, 12038-12047.	3.7	15
8	Preparation of nano-compounded polyolefin materials through in situ polymerization technique: status quo and future prospects. Science Bulletin, 2009, 54, 38-45.	1.7	9
9	Blending Behavior of High-Degree Long-Chain-Branched Polypropylene Prepared by Ziegler–Natta Catalysis with Common Polypropylene. Industrial & Engineering Chemistry Research, 2021, 60, 13614-13626.	3.7	9
10	Recent key developments in isotactic polypropylene in-reactor alloy and in-reactor nanocomposite technology. Science China Chemistry, 2016, 59, 1231-1239.	8.2	8
11	Investigation of Chain Microstructure of Polypropylene Polymerized by Ziegler–Natta Catalysts with Diester and Diether Compound as Internal Donor via Hydrogen Chain Transfer. Industrial & Engineering Chemistry Research, 2020, 59, 1836-1844.	3.7	8
12	Industrial Adaptability of the Ziegler–Natta Catalyst-Friendly Synthesis of Long-Chain-Branched Polypropylene Based on ï‰-Alkenylmethyldichlorosilane-Assisted Propylene Polymerization. Industrial & Engineering Chemistry Research, 2021, 60, 4589-4601.	3.7	8
13	In Situ Promotion of Long-Chain Branching in Polyethylene from Ziegler–Natta Catalysts. ACS Applied Polymer Materials, 2021, 3, 6455-6467.	4.4	8
14	Nanocomposites-Turned-Nanoalloys Polypropylene/Multiwalled Carbon Nanotubes- <i>graft</i> -Polystyrene: Synthesis and Polymer Nanoreinforcement. Industrial & Engineering Chemistry Research, 2021, 60, 10167-10179.	3.7	7
15	Assessing 1,9-Decadiene/Ethylene Copolymerization with Ziegler–Natta Catalyst to Access Long Chain-Branched Polyethylene. ACS Omega, 2021, 6, 675-679.	3.5	6
16	Dielectric Property and Breakdown Strength Performance of Long-Chain Branched Polypropylene for Metallized Film Capacitors. Materials, 2022, 15, 3071.	2.9	5
17	Regiochemistryâ€Aligned Copolymerization of Propylene with <i>p</i> â€Methylstyrene and 1,4â€DivinyÂlbenzene Using an <i>ansa</i> â€Metallocene Catalyst. Macromolecular Chemistry and Physics, 2014, 215, 1776-1784.	2.2	3