Pavel A Vlasov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3416790/publications.pdf

Version: 2024-02-01

713332 623574 33 464 14 21 citations g-index h-index papers 33 33 33 243 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Detailed kinetic modeling of soot formation in hydrocarbon pyrolysis behind shock waves. Proceedings of the Combustion Institute, 2002, 29, 2335-2341.	2.4	63
2	Detailed kinetic modeling of soot formation in shock tube pyrolysis and oxidation of toluene and n-heptane. Proceedings of the Combustion Institute, 2007, 31, 575-583.	2.4	56
3	Soot formation during the pyrolysis and oxidation of acetylene and ethylene in shock waves. Kinetics and Catalysis, 2015, 56, 12-30.	0.3	35
4	Shock tube and modeling study of soot formation during the pyrolysis and oxidation of a number of aliphatic and aromatic hydrocarbons. Proceedings of the Combustion Institute, 2011, 33, 625-632.	2.4	31
5	DETAILED KINETIC MODELING OF SOOT FORMATION DURING SHOCK-TUBE PYROLYSIS OF C6H6: DIRECT COMPARISON WITH THE RESULTS OF TIME-RESOLVED LASER-INDUCED INCANDESCENCE (LII) AND CW-LASER EXTINCTION MEASUREMENTS. Combustion Science and Technology, 2004, 176, 1667-1703.	1,2	27
6	Soot formation in the pyrolysis of benzene, methylbenzene, and ethylbenzene in shock waves. Kinetics and Catalysis, 2011, 52, 358-370.	0.3	24
7	Kinetic Modeling of Carbon Suboxide Thermal Decomposition and Formation of Soot-Like Particles Behind Shock Waves. Combustion Science and Technology, 2000, 158, 439-460.	1.2	22
8	Soot Formation During Pyrolysis of Methane and Rich Methane/Oxygen Mixtures Behind Reflected Shock Waves. Combustion Science and Technology, 2008, 180, 1876-1899.	1.2	19
9	A Shock-Tube and Modeling Study of Soot Formation During Pyrolysis of Propane, Propane/Toluene and Rich Propane/Oxygen Mixtures. Combustion Science and Technology, 2010, 182, 1645-1671.	1.2	19
10	Kinetics of Carbon Cluster Formation in the Course of C3O2Pyrolysis. Kinetics and Catalysis, 2001, 42, 583-593.	0.3	17
11	Unified kinetic model of soot formation in the pyrolysis and oxidation of aliphatic and aromatic hydrocarbons in shock waves. Kinetics and Catalysis, 2016, 57, 557-572.	0.3	17
12	Reactions of initiation of the autoignition of H2–O2 mixtures in shock waves. Russian Journal of Physical Chemistry B, 2016, 10, 456-468.	0.2	17
13	Luminescent Characteristics of the Shock-Wave Ignition of an Ethyleneâ^'Oxygen Mixture. Combustion Science and Technology, 2017, 189, 854-868.	1.2	16
14	Kinetic modeling of solid carbon particle formation and thermal decomposition during carbon suboxide pyrolysis behind shock waves. Combustion Science and Technology, 2002, 174, 185-213.	1.2	15
15	A Shock Tube Study of Soot Formation Following n-Hexane Pyrolysis. Zeitschrift Fur Physikalische Chemie, 1991, 173, 129-139.	1.4	14
16	Chemiluminescent emission of CH*, C*2, OH*, and CO*2 during the ignition of ethane behind reflected shock waves. Russian Journal of Physical Chemistry B, 2016, 10, 983-990.	0.2	12
17	Effect of Iron Pentacarbonyl on Soot Formation Behind Shock Waves. Combustion Science and Technology, 2012, 184, 1838-1861.	1,2	11
18	Chemical Ionization of <i>n</i> -Hexane, Acetylene, and Methane behind Reflected Shock Waves. Combustion Science and Technology, 2018, 190, 57-81.	1.2	10

#	Article	IF	CITATIONS
19	Shock Tube and Modeling Study of Chemical Ionization in the Oxidation of Acetylene and Methane Mixtures. Combustion Science and Technology, 2016, 188, 1815-1830.	1.2	8
20	Effect of pressure on soot formation in the pyrolysis of n-hexane and the oxidation of fuel-rich mixtures of n-heptane behind reflected shock waves. Russian Journal of Physical Chemistry B, 2016, 10, 912-921.	0.2	6
21	Nitromethane Isomerization during Its Thermal Decay. Kinetics and Catalysis, 2018, 59, 6-10.	0.3	6
22	Kinetics of Thermal Decomposition and Oxidation of Soot Particles in Shock Waves. Kinetics and Catalysis, 2004, 45, 628-633.	0.3	5
23	Ignition of cyclopropane in shock waves. Russian Journal of Physical Chemistry B, 2016, 10, 602-614.	0.2	4
24	Formation of soot particles in pyrolysis and oxidation of aliphatic and aromatic hydrocarbons: Experiments and detailed kinetic modeling. Russian Journal of Physical Chemistry B, 2016, 10, 587-594.	0.2	4
25	Numerical simulation of the autoignition of hydrogen-air mixtures behind shock waves. Journal of Physics: Conference Series, 2015, 653, 012059.	0.3	2
26	Investigation of the mechanism of chemical ionization accompanying high-temperature oxidation of methane in shock waves. Combustion, Explosion and Shock Waves, 1982, 18, 39-45.	0.3	1
27	Use of pulsed probes for diagnostics of dense stationary plasmas in the presence of chemical reactions. Combustion, Explosion and Shock Waves, 1984, 20, 422-429.	0.3	1
28	Effect of iron pentacarbonyl additives on the nucleation of soot particles during the pyrolysis of ethylene in shock waves. Journal of Physics: Conference Series, 2018, 946, 012072.	0.3	1
29	Kinetic and thermochemical characteristics of the dissociation of Mo(CO) ₆ and W(CO) ₆ . International Journal of Chemical Kinetics, 2019, 51, 232-245.	1.0	1
30	Investigation of the Size Distribution Function Behaviour of Metal Aerosol Particles. Zeitschrift Fur Physikalische Chemie, 1995, 191, 229-239.	1.4	0
31	Experimental study of the emission of electronically excited CH*, C* ₂ , OH*, and CO* ₂ during ignition of hydrocarbons behind reflected shock waves. Journal of Physics: Conference Series, 2016, 774, 012080.	0.3	0
32	The kinetic characteristic features of the low temperature hydrogen oxidation during the induction period behind reflected shock waves. Journal of Physics: Conference Series, 2016, 774, 012081.	0.3	0
33	Emission of OH* and CO ₂ * during the high-temperature oxidation of acetone in reflected shock waves. Journal of Physics: Conference Series, 2018, 946, 012071.	0.3	0