Alex Rovira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3416646/publications.pdf Version: 2024-02-01

ALEY ROULDA

#	Article	IF	CITATIONS
1	Menopause does not modify disability trajectories in a longitudinal cohort of women with clinically isolated syndrome and multiple sclerosis followed from disease onset. European Journal of Neurology, 2022, 29, 1075-1081.	1.7	16
2	CSF chitinase 3-like 1 is associated with iron rims in patients with a first demyelinating event. Multiple Sclerosis Journal, 2022, 28, 71-81.	1.4	10
3	Magnetic resonance imaging findings in focalâ€onset status epilepticus. European Journal of Neurology, 2022, 29, 3-11.	1.7	5
4	Treatment response scoring systems to assess long-term prognosis in self-injectable DMTs relapsing–remitting multiple sclerosis patients. Journal of Neurology, 2022, 269, 452-459.	1.8	10
5	Characterizing 1-year development of cervical cord atrophy across different MS phenotypes: A voxel-wise, multicentre analysis. Multiple Sclerosis Journal, 2022, 28, 885-899.	1.4	3
6	Performance of the 2017 and 2010 Revised McDonald Criteria in Predicting MS Diagnosis After a Clinically Isolated Syndrome. Neurology, 2022, 98, .	1.5	31
7	Oral contraceptives do not modify the risk of a second attack and disability accrual in a prospective cohort of women with a clinically isolated syndrome and early multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 950-957.	1.4	7
8	Routine Gadolinium Use for MRI Follow-Up of Multiple Sclerosis: Counterpoint—Gadolinium Should Not Always Be Used to Assess Disease Activity. American Journal of Roentgenology, 2022, 219, 26-27.	1.0	1
9	Assessment of automatic decision-support systems for detecting active T2 lesions in multiple sclerosis patients. Multiple Sclerosis Journal, 2022, 28, 1209-1218.	1.4	4
10	Impact of COVID-19 pandemic on frequency of clinical visits, performance of MRI studies, and therapeutic choices in a multiple sclerosis referral centre. Journal of Neurology, 2022, 269, 1764-1772.	1.8	5
11	Prognosis of a second clinical event from baseline MRI in patients with a CIS: a multicenter study using a machine learning approach. Neuroradiology, 2022, 64, 1383-1390.	1.1	2
12	T1/T2-weighted ratio is a surrogate marker of demyelination in multiple sclerosis – Commentary. Multiple Sclerosis Journal, 2022, 28, 357-358.	1.4	4
13	MAGNIMS recommendations for harmonization of MRI data in MS multicenter studies. NeuroImage: Clinical, 2022, 34, 102972.	1.4	11
14	T1/T2-weighted ratio in multiple sclerosis: A longitudinal study with clinical associations. NeuroImage: Clinical, 2022, 34, 102967.	1.4	13
15	Can Cognitive training Reignite Compensatory Mechanisms in Advanced Multiple Sclerosis Patients? An Explorative Morphological Network Approach. Neuroscience, 2022, , .	1.1	0
16	The reality of multiple sclerosis assessment in middle-income countries – Authors' reply. Lancet Neurology, The, 2022, 21, 215-216.	4.9	0
17	SWI as an Alternative to Contrast-Enhanced Imaging to Detect Acute MS Lesions. American Journal of Neuroradiology, 2022, 43, 534-539.	1.2	2
18	Spinal cord grey matter atrophy in Multiple Sclerosis clinical practice. Neuroscience Informatics, 2022, 2, 100071.	2.8	1

#	Article	IF	CITATIONS
19	Serum neurofilament light chain levels predict long-term disability progression in patients with progressive multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 732-740.	0.9	8
20	Assessment of 2D conventional and synthetic MRI in multiple sclerosis. Neuroradiology, 2022, , .	1.1	2
21	The kappa free light chain index and oligoclonal bands have a similar role in the McDonald criteria. Brain, 2022, 145, 3931-3942.	3.7	12
22	Adding brain volume measures into response criteria in multiple sclerosis: the RÃo-4 score. Neuroradiology, 2021, 63, 1031-1041.	1.1	2
23	The role of pontine lesion location in differentiating multiple sclerosis from vascular risk factor-related small vessel disease. Multiple Sclerosis Journal, 2021, 27, 968-972.	1.4	3
24	MGMT methylation may benefit overall survival in patients with moderately vascularized glioblastomas. European Radiology, 2021, 31, 1738-1747.	2.3	16
25	MR imaging findings in primary spinal cord glioblastoma. Radiology Case Reports, 2021, 16, 72-77.	0.2	2
26	Differential effect of vascularity between long―and shortâ€ŧerm survivors with IDH1/2 wildâ€ŧype glioblastoma. NMR in Biomedicine, 2021, 34, e4462.	1.6	5
27	Mind the gap: from neurons to networks to outcomes in multiple sclerosis. Nature Reviews Neurology, 2021, 17, 173-184.	4.9	46
28	Early experience with a novel net temporary bridging device (Cascade) to assist endovascular coil embolization of intracranial aneurysms. Journal of Neurosurgery, 2021, 134, 591-599.	0.9	5
29	The frequency and characteristics of MS misdiagnosis in patients referred to the multiple sclerosis centre of Catalonia. Multiple Sclerosis Journal, 2021, 27, 913-921.	1.4	20
30	Diagnosis of Progressive Multiple Sclerosis From the Imaging Perspective. JAMA Neurology, 2021, 78, 351.	4.5	30
31	Circulating AQP4 Levels in Patients with Cerebral Amyloid Angiopathy-Associated Intracerebral Hemorrhage. Journal of Clinical Medicine, 2021, 10, 989.	1.0	5
32	Scoring the 10â€year risk of ambulatory disability in multiple sclerosis: the RoAD score. European Journal of Neurology, 2021, 28, 2533-2542.	1.7	16
33	Transductive Transfer Learning for Domain Adaptation in Brain Magnetic Resonance Image Segmentation. Frontiers in Neuroscience, 2021, 15, 608808.	1.4	5
34	Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain, 2021, 144, 1296-1311.	3.7	81
35	Quantitative comparison of subcortical and ventricular volumetry derived from MPRAGE and MP2RAGE images using different brain morphometry software. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2021, 3 <u>4, 903-914.</u>	1.1	2
36	Identification of patients with relapsing multiple sclerosis eligible for high-efficacy therapies. Neurodegenerative Disease Management, 2021, 11, 251-261.	1.2	5

#	Article	IF	CITATIONS
37	Assessing the Accuracy and Reproducibility of <scp>PARIETAL</scp> : A Deep Learning Brain Extraction Algorithm. Journal of Magnetic Resonance Imaging, 2021, , .	1.9	7
38	Beyond McDonald: updated perspectives on MRI diagnosis of multiple sclerosis. Expert Review of Neurotherapeutics, 2021, 21, 895-911.	1.4	7
39	Cortical metabolic and structural differences in patients with chronic migraine. An exploratory 18FDG-PET and MRI study. Journal of Headache and Pain, 2021, 22, 75.	2.5	10
40	Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Scientific Data, 2021, 8, 219.	2.4	27
41	Quantification of Cervical Cord Cross-Sectional Area: Which Acquisition, Vertebra Level, and Analysis Software? A Multicenter Repeatability Study on a Traveling Healthy Volunteer. Frontiers in Neurology, 2021, 12, 693333.	1.1	8
42	Generic acquisition protocol for quantitative MRI of the spinal cord. Nature Protocols, 2021, 16, 4611-4632.	5.5	65
43	2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurology, The, 2021, 20, 653-670.	4.9	302
44	Effect of Changes in MS Diagnostic Criteria Over 25 Years on Time to Treatment and Prognosis in Patients With Clinically Isolated Syndrome. Neurology, 2021, 97, e1641-e1652.	1.5	35
45	Drug-related demyelinating syndromes: understanding risk factors, pathophysiological mechanisms and magnetic resonance imaging findings. Multiple Sclerosis and Related Disorders, 2021, 55, 103146.	0.9	10
46	Association of Gray Matter Atrophy Patterns With Clinical Phenotype and Progression in Multiple Sclerosis. Neurology, 2021, 96, e1561-e1573.	1.5	28
47	Optic Nerve Topography in Multiple Sclerosis Diagnosis. Neurology, 2021, 96, e482-e490.	1.5	32
48	The long-term outcomes of CIS patients in the Barcelona inception cohort: Looking back to recognize aggressive MS. Multiple Sclerosis Journal, 2020, 26, 1658-1669.	1.4	41
49	Robust association between vascular habitats and patient prognosis in glioblastoma: An international multicenter study. Journal of Magnetic Resonance Imaging, 2020, 51, 1478-1486.	1.9	24
50	Tumefactive inflammatory leukoencephalopathy in cocaine users: Report of three cases. Multiple Sclerosis and Related Disorders, 2020, 38, 101496.	0.9	10
51	Circulating Aquaporin-4 as A biomarker of early neurological improvement in stroke patients: A pilot study. Neuroscience Letters, 2020, 714, 134580.	1.0	7
52	A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. NeuroImage: Clinical, 2020, 25, 102149.	1.4	40
53	Harnessing Real-World Data to Inform Decision-Making: Multiple Sclerosis Partners Advancing Technology and Health Solutions (MS PATHS). Frontiers in Neurology, 2020, 11, 632.	1.1	52
54	REMOTE Ischemic Perconditioning Among Acute Ischemic Stroke Patients in Catalonia: REMOTE-CAT PROJECT. Frontiers in Neurology, 2020, 11, 569696.	1.1	6

#	Article	IF	CITATIONS
55	Ratio of T1-Weighted to T2-Weighted Signal Intensity as a Measure of Tissue Integrity: Comparison with Magnetization Transfer Ratio in Patients with Multiple Sclerosis. American Journal of Neuroradiology, 2020, 41, 461-463.	1.2	27
56	Gadolinium Deposition Safety: Seeking the Patient's Perspective. American Journal of Neuroradiology, 2020, 41, 944-946.	1.2	25
57	Assessment of brain volumes obtained from MP-RAGE and MP2RAGE images, quantified using different segmentation methods. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020, 33, 757-767.	1.1	3
58	Gadolinium should always be used to assess disease activity in MS – No. Multiple Sclerosis Journal, 2020, 26, 767-769.	1.4	9
59	Identifying Progression in Multiple Sclerosis: New Perspectives. Annals of Neurology, 2020, 88, 438-452.	2.8	67
60	Texture analysis in susceptibility-weighted imaging may be useful to differentiate acute from chronic multiple sclerosis lesions. European Radiology, 2020, 30, 6348-6356.	2.3	16
61	Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort. Journal of Neurology, 2020, 267, 3541-3554.	1.8	14
62	MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nature Reviews Neurology, 2020, 16, 171-182.	4.9	150
63	Distinct influence of different vascular risk factors on white matter brain lesions in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 388-391.	0.9	14
64	A validation study of manual atrophy measures in patients with MultipleÂSclerosis. Neuroradiology, 2020, 62, 955-964.	1.1	10
65	Longitudinal Assessment of Multiple Sclerosis with the Brainâ€Age Paradigm. Annals of Neurology, 2020, 88, 93-105.	2.8	79
66	Exposure to gadolinium and neurotoxicity: current status of preclinical and clinical studies. Neuroradiology, 2020, 62, 925-934.	1.1	39
67	Value of 3T Susceptibility-Weighted Imaging in the Diagnosis of Multiple Sclerosis. American Journal of Neuroradiology, 2020, 41, 1001-1008.	1.2	68
68	Testing the Food Experience in Healthy Human Volunteers: a Proof-of-Concept Study. Journal of Gastrointestinal and Liver Diseases, 2020, 29, 65-68.	0.5	0
69	Evaluation of the Central Vein Sign as a Diagnostic Imaging Biomarker in Multiple Sclerosis. JAMA Neurology, 2019, 76, 1446.	4.5	119
70	Use of gadolinium for MRI diagnostic or surveillance studies in patients with MS. Neurology, 2019, 93, 239-240.	1.5	3
71	Longitudinal spinal cord atrophy in multiple sclerosis using the generalized boundary shift integral. Annals of Neurology, 2019, 86, 704-713.	2.8	32
72	Clinically relevant cranio-caudal patterns of cervical cord atrophy evolution in MS. Neurology, 2019, 93, e1852-e1866.	1.5	37

#	Article	IF	CITATIONS
73	Peri-ictal magnetic resonance imaging in status epilepticus: Temporal relationship and prognostic value in 60 patients. Seizure: the Journal of the British Epilepsy Association, 2019, 71, 289-294.	0.9	25
74	Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders. Lancet Neurology, The, 2019, 18, 185-197.	4.9	110
75	Usefulness of brain perfusion CT in focalâ€onset status epilepticus. Epilepsia, 2019, 60, 1317-1324.	2.6	22
76	CLIPPERS and its mimics: evaluation of new criteria for the diagnosis of CLIPPERS. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1027-1038.	0.9	51
77	Procedural approaches and angiographic signs predicting first-pass recanalization in patients treated with mechanical thrombectomy for acute ischaemic stroke. Interventional Neuroradiology, 2019, 25, 491-496.	0.7	21
78	Predictors of response to endovascular treatment of posterior circulation stroke. European Journal of Radiology, 2019, 116, 219-224.	1.2	6
79	Brain regional volume estimations with NeuroQuant and FIRST: a study in patients with a clinically isolated syndrome. Neuroradiology, 2019, 61, 667-674.	1.1	15
80	Menarche, pregnancies, and breastfeeding do not modify long-term prognosis in multiple sclerosis. Neurology, 2019, 92, e1507-e1516.	1.5	49
81	Multiple Sclerosis Lesion Synthesis in MRI Using an Encoder-Decoder U-NET. IEEE Access, 2019, 7, 25171-25184.	2.6	46
82	Cerebrovascular disease burden in late-onset non-lesional focal epilepsy. Seizure: the Journal of the British Epilepsy Association, 2019, 66, 31-35.	0.9	13
83	Imaging of meningeal inflammation should become part of the routine MRI protocol – Commentary. Multiple Sclerosis Journal, 2019, 25, 333-335.	1.4	2
84	One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. Neurolmage: Clinical, 2019, 21, 101638.	1.4	91
85	Unraveling treatment response in multiple sclerosis. Neurology, 2019, 92, 180-192.	1.5	88
86	Standardized assessment of the signal intensity increase on unenhanced T1-weighted images in the brain: the European Gadolinium Retention Evaluation Consortium (GREC) Task Force position statement. European Radiology, 2019, 29, 3959-3967.	2.3	26
87	Association between pathological and MRI findings in multiple sclerosis. Lancet Neurology, The, 2019, 18, 198-210.	4.9	163
88	Impact of 3 Tesla MRI on interobserver agreement in clinically isolated syndrome: A MAGNIMS multicentre study. Multiple Sclerosis Journal, 2019, 25, 352-360.	1.4	22
89	The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nature Reviews Neurology, 2018, 14, 199-213.	4.9	157
90	The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain, 2018, 141, 1075-1084.	3.7	98

#	Article	IF	CITATIONS
91	Radiologically isolated syndrome or subclinical multiple sclerosis: MAGNIMS consensus recommendations. Multiple Sclerosis Journal, 2018, 24, 214-221.	1.4	77
92	Classic Block Design "Pseudoâ€â€Restingâ€State fMRI Changes After a Neurorehabilitation Program in Patients with Multiple Sclerosis. Journal of Neuroimaging, 2018, 28, 313-319.	1.0	14
93	Cervical Cord Atrophy and Long-Term Disease Progression in Patients with Primary-Progressive Multiple Sclerosis. American Journal of Neuroradiology, 2018, 39, 399-404.	1.2	17
94	Prediction of a multiple sclerosis diagnosis in patients with clinically isolated syndrome using the 2016 MAGNIMS and 2010 McDonald criteria: a retrospective study. Lancet Neurology, The, 2018, 17, 133-142.	4.9	98
95	Deep gray matter volume loss drives disability worsening in multiple sclerosis. Annals of Neurology, 2018, 83, 210-222.	2.8	295
96	A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis. NeuroImage: Clinical, 2018, 17, 607-615.	1.4	39
97	Measurement of Whole-Brain and Gray Matter Atrophy in Multiple Sclerosis: Assessment with MR Imaging. Radiology, 2018, 288, 554-564.	3.6	47
98	Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI. NeuroImage: Clinical, 2018, 19, 466-475.	1.4	47
99	Brain atrophy 15 years after CIS: Baseline and follow-up clinico-radiological correlations. Multiple Sclerosis Journal, 2018, 24, 721-727.	1.4	6
100	Spinal cord lesions: A modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor. Multiple Sclerosis Journal, 2018, 24, 301-312.	1.4	79
101	Disability progression markers over 6–12 years in interferon-β-treated multiple sclerosis patients. Multiple Sclerosis Journal, 2018, 24, 322-330.	1.4	60
102	Diagnosis of multiple sclerosis: a multicentre study to compare revised McDonald-2010 and Filippi-2010 criteria. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 316-318.	0.9	18
103	A critical appraisal of the quality of low back pain practice guidelines using the AGREE II tool and comparison with previous evaluations: a EuroAIM initiative. European Spine Journal, 2018, 27, 2781-2790.	1.0	22
104	Progression of regional grey matter atrophy in multiple sclerosis. Brain, 2018, 141, 1665-1677.	3.7	269
105	Cephalometric oropharynx and oral cavity analysis in Chiari malformation Type I: a retrospective case-control study. Journal of Neurosurgery, 2017, 126, 626-633.	0.9	12
106	Brain Atrophy in Multiple Sclerosis. Neuroimaging Clinics of North America, 2017, 27, 289-300.	0.5	64
107	MR Imaging in Monitoring and Predicting Treatment Response in Multiple Sclerosis. Neuroimaging Clinics of North America, 2017, 27, 277-287.	0.5	20
108	Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage, 2017, 155, 159-168.	2.1	287

#	Article	IF	CITATIONS
109	Cumulative Dose of Macrocyclic Gadolinium-Based Contrast Agent Improves Detection of Enhancing Lesions in Patients with Multiple Sclerosis. American Journal of Neuroradiology, 2017, 38, 1486-1493.	1.2	12
110	MR imaging in hyperacute ischemic stroke. European Journal of Radiology, 2017, 96, 125-132.	1.2	29
111	Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation. NeuroImage: Clinical, 2017, 15, 228-238.	1.4	19
112	Advances in the Diagnosis, Characterization, and Monitoring of Multiple Sclerosis. Neuroimaging Clinics of North America, 2017, 27, xvii-xviii.	0.5	0
113	Chelated or dechelated gadolinium deposition. Lancet Neurology, The, 2017, 16, 955.	4.9	19
114	Lesion topographies in multiple sclerosis diagnosis. Neurology, 2017, 89, 2351-2356.	1.5	27
115	ESNR Presidential Address, 2017. Neuroradiology, 2017, 59, 1-2.	1.1	10
116	Automated tissue segmentation of MR brain images in the presence of white matter lesions. Medical Image Analysis, 2017, 35, 446-457.	7.0	55
117	Hippocampal and Deep Gray Matter Nuclei Atrophy Is Relevant for Explaining Cognitive Impairment in MS: A Multicenter Study. American Journal of Neuroradiology, 2017, 38, 18-24.	1.2	80
118	Grey matter atrophy is associated with disability increase in natalizumab-treated patients. Multiple Sclerosis Journal, 2017, 23, 556-566.	1.4	21
119	Measurement of Cortical Thickness and Volume of Subcortical Structures in Multiple Sclerosis: Agreement between 2D Spin-Echo and 3D MPRAGE T1-Weighted Images. American Journal of Neuroradiology, 2017, 38, 250-256.	1.2	9
120	MRI monitoring of spinal cord changes in patients with multiple sclerosis. Current Opinion in Neurology, 2016, 29, 445-452.	1.8	5
121	Clinical spectrum associated with MOG autoimmunity in adults: significance of sharing rodent MOG epitopes. Journal of Neurology, 2016, 263, 1349-1360.	1.8	112
122	Spinal Cord in Multiple Sclerosis: Magnetic Resonance Imaging Features and Differential Diagnosis. Seminars in Ultrasound, CT and MRI, 2016, 37, 396-410.	0.7	9
123	Neurofilament light chain level is a weak risk factor for the development of MS. Neurology, 2016, 87, 1076-1084.	1.5	85
124	The clinical perspective: How to personalise treatment in MS and how may biomarkers including imaging contribute to this?. Multiple Sclerosis Journal, 2016, 22, 18-33.	1.4	20
125	Contribution of the symptomatic lesion in establishing MS diagnosis and prognosis. Neurology, 2016, 87, 1368-1374.	1.5	42
126	A regional consensus recommendation on brain atrophy as an outcome measure in multiple sclerosis. BMC Neurology, 2016, 16, 240.	0.8	14

Alex Rovira

#	Article	IF	CITATIONS
127	Other noninfectious inflammatory disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 135, 425-446.	1.0	8
128	Improved Automatic Detection of New T2 Lesions in Multiple Sclerosis Using Deformation Fields. American Journal of Neuroradiology, 2016, 37, 1816-1823.	1.2	30
129	Power estimation for non-standardized multisite studies. NeuroImage, 2016, 134, 281-294.	2.1	36
130	Assessing response to interferon- \hat{l}^2 in a multicenter dataset of patients with MS. Neurology, 2016, 87, 134-140.	1.5	98
131	Brain Volume Loss During the First Year of Interferonâ€Beta Treatment in Multiple Sclerosis: Baseline Inflammation and Regional Brain Volume Dynamics. Journal of Neuroimaging, 2016, 26, 532-538.	1.0	21
132	MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurology, The, 2016, 15, 292-303.	4.9	679
133	MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes. Human Molecular Genetics, 2016, 25, 308-316.	1.4	31
134	An uncommon first manifestation of multiple sclerosis: Tako-Tsubo cardiomyopathy. Multiple Sclerosis Journal, 2016, 22, 842-846.	1.4	18
135	Neurological damage after transcatheter aortic valve implantation compared with surgical aortic valve replacement in intermediate risk patients. Clinical Research in Cardiology, 2016, 105, 508-517.	1.5	40
136	Effects of diazoxide in multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e147.	3.1	8
137	Treating relapsing–remitting multiple sclerosis: therapy effects on brain atrophy. Journal of Neurology, 2015, 262, 2617-2626.	1.8	34
138	Should we systematically test patients with clinically isolated syndrome for auto-antibodies?. Multiple Sclerosis Journal, 2015, 21, 1802-1810.	1.4	10
139	Trajectories of subcortical iron accumulation in MS. Neurology, 2015, 84, 2388-2389.	1.5	2
140	Predictive value of early brain atrophy on response in patients treated with interferon β. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e132.	3.1	28
141	Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling. NeuroImage: Clinical, 2015, 9, 640-647.	1.4	31
142	Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurology, The, 2015, 14, 302-317.	4.9	437
143	A toolbox for multiple sclerosis lesion segmentation. Neuroradiology, 2015, 57, 1031-1043.	1.1	76
144	MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—clinical implementation in the diagnostic process. Nature Reviews Neurology, 2015, 11, 471-482.	4.9	354

#	Article	IF	CITATIONS
145	Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain, 2015, 138, 918-931.	3.7	147
146	Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain, 2015, 138, 1863-1874.	3.7	403
147	Thrombectomy within 8 Hours after Symptom Onset in Ischemic Stroke. New England Journal of Medicine, 2015, 372, 2296-2306.	13.9	4,059
148	Secondary progressive NMO, or concomitant NMO and a primary neurodegenerative disorder?. Multiple Sclerosis Journal, 2015, 21, 1876-1878.	1.4	2
149	Juxtacortical Lesions and Cortical Thinning in Multiple Sclerosis. American Journal of Neuroradiology, 2015, 36, 2270-2276.	1.2	14
150	Maximal Admission Core Lesion Compatible With Favorable Outcome in Acute Stroke Patients Undergoing Endovascular Procedures. Stroke, 2015, 46, 2849-2852.	1.0	31
151	MACNIMS consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients. Nature Reviews Neurology, 2015, 11, 597-606.	4.9	422
152	Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nature Reviews Neurology, 2015, 11, 676-686.	4.9	109
153	Spinal cord MRI should always be performed in clinically isolated syndrome patients: No. Multiple Sclerosis Journal, 2014, 20, 1686-1687.	1.4	6
154	BOOST: A supervised approach for multiple sclerosis lesion segmentation. Journal of Neuroscience Methods, 2014, 237, 108-117.	1.3	28
155	Evaluating the response to glatiramer acetate in relapsing–remitting multiple sclerosis (RRMS) patients. Multiple Sclerosis Journal, 2014, 20, 1602-1608.	1.4	36
156	NMO spectrum disorders: how wide is the spectrum?. Multiple Sclerosis Journal, 2014, 20, 1417-1419.	1.4	2
157	Brain Magnetic Resonance in Hepatic Encephalopathy. Seminars in Ultrasound, CT and MRI, 2014, 35, 136-152.	0.7	48
158	A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies. Neuroradiology, 2014, 56, 363-374.	1.1	47
159	Early predictors of multiple sclerosis after a typical clinically isolated syndrome. Multiple Sclerosis Journal, 2014, 20, 1721-1726.	1.4	31
160	Determinants of iron accumulation in deep grey matter of multiple sclerosis patients. Multiple Sclerosis Journal, 2014, 20, 1692-1698.	1.4	47
161	MARGA: Multispectral Adaptive Region Growing Algorithm for brain extraction on axial MRI. Computer Methods and Programs in Biomedicine, 2014, 113, 655-673.	2.6	32
162	Diagnostic value of brain chronic black holes on T1-weighted MR images in clinically isolated syndromes. Multiple Sclerosis Journal, 2014, 20, 1471-1477.	1.4	25

#	Article	IF	CITATIONS
163	Recommendations for the radiological diagnosis and follow-up of neuropathological abnormalities associated with tuberous sclerosis complex. Journal of Neuro-Oncology, 2014, 118, 205-223.	1.4	31
164	Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding. Computer Methods and Programs in Biomedicine, 2014, 115, 147-161.	2.6	39
165	1H Magnetic Resonance Spectroscopy in Multiple Sclerosis and Related Disorders. Neuroimaging Clinics of North America, 2013, 23, 459-474.	0.5	31
166	Brain atrophy and lesion load predict long term disability in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1082-1091.	0.9	267
167	Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Multiple Sclerosis Journal, 2013, 19, 1175-1181.	1.4	93
168	Brain Magnetic Resonance Spectroscopy in Episodic Hepatic Encephalopathy. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 272-277.	2.4	41
169	Idiopathic Inflammatory Demyelinating Diseases of the Brainstem. Seminars in Ultrasound, CT and MRI, 2013, 34, 123-130.	0.7	8
170	Magnetic resonance monitoring of lesion evolution in multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2013, 6, 298-310.	1.5	98
171	Automated detection of multiple sclerosis lesions in serial brain MRI. Neuroradiology, 2012, 54, 787-807.	1.1	76
172	Hepatic encephalopathy is associated with posttransplant cognitive function and brain volume. Liver Transplantation, 2011, 17, 38-46.	1.3	129
173	Interferon Beta-1b for the Treatment of Primary Progressive Multiple Sclerosis. Archives of Neurology, 2011, 68, 1421.	4.9	44
174	A Single, Early Magnetic Resonance Imaging Study in the Diagnosis of Multiple Sclerosis. Archives of Neurology, 2009, 66, 587-92.	4.9	114
175	Predicting progression in primary progressive multiple sclerosis: A 10â€year multicenter study. Annals of Neurology, 2008, 63, 790-793.	2.8	101
176	Will Rogers phenomenon in multiple sclerosis. Annals of Neurology, 2008, 64, 428-433.	2.8	80
177	MRI findings in aphasic status epilepticus. Epilepsia, 2008, 49, 1465-1469.	2.6	59
178	MR in the diagnosis and monitoring of multiple sclerosis: An overview. European Journal of Radiology, 2008, 67, 409-414.	1.2	91
179	<i>B</i> leeding <i>R</i> isk <i>A</i> nalysis in <i>S</i> troke <i>I</i> maging Before Thrombo <i>L</i> ysis (BRASIL). Stroke, 2007, 38, 2738-2744.	1.0	240
180	Decreased white matter lesion volume and improved cognitive function after liver transplantation. Hepatology, 2007, 46, 1485-1490.	3.6	78

#	Article	IF	CITATIONS
181	Noncirrhotic portal vein thrombosis exhibits neuropsychological and MR changes consistent with minimal hepatic encephalopathy. Hepatology, 2006, 43, 707-714.	3.6	113
182	Hyperacute Ischemic Stroke: Middle Cerebral Artery Susceptibility Sign at Echo-planar Gradient-Echo MR Imaging. Radiology, 2004, 232, 466-473.	3.6	138
183	Specificity of Barkhof Criteria in Predicting Conversion to Multiple Sclerosis When Applied to Clinically Isolated Brainstem Syndromes. Archives of Neurology, 2004, 61, 222.	4.9	32
184	Oral glutamine challenge and magnetic resonance spectroscopy in three patients with congenital portosystemic shunts. Journal of Hepatology, 2004, 40, 552-557.	1.8	37
185	T2 hyperintensity along the cortico-spinal tract in cirrhosis relates to functional abnormalities. Hepatology, 2003, 38, 1026-1033.	3.6	60
186	Magnetic resonance imaging measurement of brain edema in patients with liver disease: resolution after transplantation. Current Opinion in Neurology, 2002, 15, 731-737.	1.8	26
187	Serial proton spectroscopy, magnetization transfer ratio andT2relaxation in pseudotumoral demyelinating lesions. NMR in Biomedicine, 2002, 15, 284-292.	1.6	11
188	Diffusion-weighted MR imaging in the acute phase of transient ischemic attacks. American Journal of Neuroradiology, 2002, 23, 77-83.	1.2	100
189	Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions: case report. American Journal of Neuroradiology, 2002, 23, 989-94.	1.2	56
190	Improvement of magnetic resonance spectroscopic abnormalities but not pallidal hyperintensity followed amelioration of hepatic encephalopathy after occlusion of a large spleno–renal shunt. Journal of Hepatology, 2001, 34, 177-178.	1.8	15
191	The development of low-grade cerebral edema in cirrhosis is supported by the evolution of 1H-magnetic resonance abnormalities after liver transplantation. Journal of Hepatology, 2001, 35, 598-604.	1.8	233
192	Usefulness of magnetic resonance spectroscopy for diagnosis of hepatic encephalopathy in a patient with relapsing confusional syndrome. Digestive Diseases and Sciences, 2001, 46, 2451-2455.	1.1	10
193	Posterior Fossa Reconstruction. Neurosurgery, 1994, 35, 874-885.	0.6	140

194 Foreword 1., 0, , xviii-xviii.

0