Nobuhiro Tsuji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3416382/publications.pdf

Version: 2024-02-01

455 papers 24,669 citations

76 h-index

8159

145 g-index

482 all docs 482 docs citations

482 times ranked 7820 citing authors

#	Article	IF	CITATIONS
1	Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Materialia, 1999, 47, 579-583.	3.8	1,955
2	Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Materialia, 1998, 39, 1221-1227.	2.6	1,131
3	Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Materialia, 2002, 47, 893-899.	2.6	1,071
4	Severe plastic deformation (SPD) processes for metals. CIRP Annals - Manufacturing Technology, 2008, 57, 716-735.	1.7	830
5	Crystallographic features of lath martensite in low-carbon steel. Acta Materialia, 2006, 54, 1279-1288.	3.8	781
6	Hardening by Annealing and Softening by Deformation in Nanostructured Metals. Science, 2006, 312, 249-251.	6.0	632
7	ARB (Accumulative Roll-Bonding) and other new Techniques to Produce Bulk Ultrafine Grained Materials. Advanced Engineering Materials, 2003, 5, 338-344.	1.6	591
8	Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scripta Materialia, 1999, 40, 795-800.	2.6	535
9	Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Materialia, 2009, 57, 4198-4208.	3.8	523
10	Heterostructured materials: superior properties from hetero-zone interaction. Materials Research Letters, 2021, 9, 1-31.	4.1	505
11	Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scripta Materialia, 2008, 59, 963-966.	2.6	377
12	Friction stir welding of carbon steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 429, 50-57.	2.6	370
13	Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing. Scripta Materialia, 2017, 134, 33-36.	2.6	336
14	Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite. Acta Materialia, 2002, 50, 4177-4189.	3.8	322
15	Ultrafine-Grained AlCoCrFeNi _{2.1} Eutectic High-Entropy Alloy. Materials Research Letters, 2016, 4, 174-179.	4.1	296
16	Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process. Scripta Materialia, 2002, 46, 281-285.	2.6	294
17	Microstructural evolution during accumulative roll-bonding of commercial purity aluminum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 340, 265-271.	2.6	257
18	Friction stir welding of a high carbon steel. Scripta Materialia, 2007, 56, 637-640.	2.6	255

#	Article	IF	CITATIONS
19	Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 99-109.	2.6	252
20	A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property. Scripta Materialia, 2002, 46, 305-310.	2.6	237
21	Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel. Acta Materialia, 2007, 55, 5873-5888.	3.8	236
22	Bulk mechanical alloying of Cu–Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process. Acta Materialia, 2007, 55, 2885-2895.	3.8	229
23	Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, 10, 163-256.	4.1	215
24	Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy by Cryo-Rolling and Annealing. Scientific Reports, 2018, 8, 3276.	1.6	209
25	Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high / medium entropy alloys. Acta Materialia, 2019, 171, 201-215.	3.8	173
26	Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process. Journal of Materials Science, 2007, 42, 1673-1681.	1.7	171
27	Yield strength and misfit volumes of NiCoCr and implications for short-range-order. Nature Communications, 2020, 11, 2507.	5.8	162
28	Crystallographic analysis of plate martensite in Fe–28.5 at.% Ni by FE-SEM/EBSD. Materials Characterization, 2005, 54, 378-386.	1.9	146
29	Ultrafine grained copper alloy sheets having both high strength and high electric conductivity. Materials Letters, 2009, 63, 1757-1760.	1.3	146
30	Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer. Acta Materialia, 2020, 198, 35-46.	3.8	143
31	Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel. International Journal of Hydrogen Energy, 2017, 42, 3371-3379.	3.8	142
32	Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process. Scripta Materialia, 2002, 47, 69-76.	2.6	141
33	Quantification of annealed microstructures in ARB processed aluminum. Acta Materialia, 2006, 54, 3055-3066.	3.8	140
34	Toughness of Ultrafine Grained Ferritic Steels Fabricated by ARB and Annealing Process. Materials Transactions, 2004, 45, 2272-2281.	0.4	139
35	Elongation increase in ultra-fine grained Al–Fe–Si alloy sheets. Acta Materialia, 2005, 53, 1737-1749.	3.8	137
36	Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 473, 189-194.	2.6	135

#	Article	IF	CITATIONS
37	Microstructure homogeneity in various metallic materials heavily deformed by accumulative roll-bonding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 423, 331-342.	2.6	128
38	Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy. Acta Materialia, 2019, 171, 132-145.	3.8	128
39	Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes. Scientific Reports, 2015, 5, 16707.	1.6	127
40	Managing Both Strength and Ductility in Ultrafine Grained Steels. ISIJ International, 2008, 48, 1114-1121.	0.6	126
41	Friction stir welding of high carbon steel with excellent toughness and ductility. Scripta Materialia, 2010, 63, 223-226.	2.6	123
42	Enhanced structural refinement by combining phase transformation and plastic deformation in steels. Scripta Materialia, 2009, 60, 1044-1049.	2.6	122
43	Remarkable transitions of yield behavior and LÃ $\frac{1}{4}$ ders deformation in pure Cu by changing grain sizes. Scripta Materialia, 2018, 142, 88-91.	2.6	121
44	Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy. Materials Chemistry and Physics, 2018, 210, 176-186.	2.0	119
45	Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures. Scripta Materialia, 2017, 131, 1-5.	2.6	118
46	Yielding nature and Hall-Petch relationships in Ti-6Al-4V alloy with fully equiaxed and bimodal microstructures. Scripta Materialia, 2019, 172, 77-82.	2.6	117
47	Dynamic recrystallization of ferrite in interstitial free steel. Scripta Materialia, 1997, 37, 477-484.	2.6	115
48	Friction stir welding of ultrafine grained Al alloy 1100 produced by accumulative roll-bonding. Scripta Materialia, 2004, 50, 57-60.	2.6	113
49	General Mechanism for the Synchronization of Electrochemical Oscillations and Self-Organized Dendrite Electrodeposition of Metals with Ordered 2D and 3D Microstructures. Journal of Physical Chemistry C, 2007, 111, 1150-1160.	1.5	112
50	Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel. Scripta Materialia, 2013, 68, 813-816.	2.6	112
51	Revealing the deformation mechanisms of Cu–Al alloys with high strength and good ductility. Acta Materialia, 2016, 110, 61-72.	3.8	111
52	Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy. Journal of Alloys and Compounds, 2019, 781, 866-872.	2.8	111
53	Superplasticity of Ultra-Fine Grained Al–Mg Alloy Produced by Accumulative Roll-Bonding. Materials Transactions, JIM, 1999, 40, 765-771.	0.9	109
54	Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel. Materials Science &	2.6	107

#	Article	IF	CITATIONS
55	Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation. Science and Technology of Advanced Materials, 2004, 5, 145-152.	2.8	105
56	Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy. Acta Materialia, 2020, 183, 64-77.	3.8	104
57	Cold-rolling and recrystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics, 2017, 84, 42-51.	1.8	102
58	Effect of rolling reduction on ultrafine grained structure and mechanical properties of low-carbon steel thermomechanically processed from martensite starting structure. Science and Technology of Advanced Materials, 2004, 5, 153-162.	2.8	100
59	Mechanism of huge LÃ $\frac{1}{4}$ ders-type deformation in ultrafine grained austenitic stainless steel. Scripta Materialia, 2019, 159, 28-32.	2.6	100
60	Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1481-1487.	1.1	99
61	Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy. Materials Chemistry and Physics, 2018, 210, 207-212.	2.0	98
62	Plastic deformation and creep damage evaluations of type 316 austenitic stainless steels by EBSD. Materials Characterization, 2010, 61, 913-922.	1.9	95
63	Microstructure and texture through thickness of ultralow carbon IF steel sheet severely deformed by accumulative roll-bonding. Science and Technology of Advanced Materials, 2004, 5, 163-172.	2.8	94
64	A new route to fabricate ultrafine-grained structures in carbon steels without severe plastic deformation. Scripta Materialia, 2009, 60, 76-79.	2.6	94
65	Change in electrical resistivity of commercial purity aluminium severely plastic deformed. Philosophical Magazine, 2010, 90, 4475-4488.	0.7	94
66	Microstructural change of ultrafine-grained aluminum during high-speed plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 350, 108-116.	2.6	93
67	Structure and strength after large strain deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 191-194.	2.6	92
68	Transformation in Stir Zone of Friction Stir Welded Carbon Steels with Different Carbon Contents. ISIJ International, 2007, 47, 299-306.	0.6	90
69	Plastic flow, structure and mechanical properties in pure Al deformed by twist extrusion. Materials Science & Scienc	2.6	90
70	Friction Stir Welding of Ultrafine Grained Interstitial Free Steels. Materials Transactions, 2006, 47, 239-242.	0.4	87
71	Microstructural and Crystallographic Features of Hydrogen-related Crack Propagation in Low Carbon Martensitic Steel. ISIJ International, 2012, 52, 208-212.	0.6	85
72	A novel ultrafine-grained Fe 22Mn 0.6C TWIP steel with superior strength and ductility. Materials Characterization, 2017, 126, 74-80.	1.9	83

#	Article	lF	Citations
73	The phase stability of equiatomic CoCrFeMnNi high-entropy alloy: Comparison between experiment and calculation results. Journal of Alloys and Compounds, 2017, 719, 189-193.	2.8	83
74	Processing of nanostructured metals and alloys via plastic deformation. MRS Bulletin, 2010, 35, 977-981.	1.7	82
75	Cold rolling and recrystallization textures of a Ni–5 at.% W alloy. Acta Materialia, 2009, 57, 2166-2179.	3.8	81
76	Microstructure quantification and correlation with flow stress of ultrafine grained commercially pure Al fabricated by equal channel angular pressing (ECAP). Materials Characterization, 2008, 59, 1312-1323.	1.9	78
77	Mechanical properties of fully martensite microstructure in Ti-6Al-4V alloy transformed from refined beta grains obtained by rapid heat treatment (RHT). Scripta Materialia, 2017, 138, 66-70.	2.6	77
78	Ultrafine Grained Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2002, 88, 359-369.	0.1	76
79	Quantification of internal dislocation density using scanning transmission electron microscopy in ultrafine grained pure aluminium fabricated by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 776-779.	2.6	76
80	Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy. Journal of Alloys and Compounds, 2019, 800, 372-378.	2.8	76
81	Role of strain reversal in grain refinement by severe plastic deformation. Materials Science & Description of the Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 499, 427-433.	2.6	70
82	Factors determining room temperature mechanical properties of bimodal microstructures in Ti-6Al-4V alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 217-222.	2.6	70
83	Characterization of Hydrogen-Related Fracture Behavior in As-Quenched Low-Carbon Martensitic Steel and Tempered Medium-Carbon Martensitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5685-5696.	1.1	69
84	Mechanical response of dislocation interaction with grain boundary in ultrafine-grained interstitial-free steel. Acta Materialia, 2021, 206, 116621.	3.8	68
85	Deformation textures of AA8011 aluminum alloy sheets severely deformed by accumulative roll bonding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 3151-3163.	1.1	67
86	Texture evolution in pure aluminum subjected to monotonous and reversal straining in high-pressure torsion. Scripta Materialia, 2009, 60, 893-896.	2.6	67
87	Nanostructuring with Structural-Compositional Dual Heterogeneities Enhances Strength-Ductility Synergy in Eutectic High Entropy Alloy. Scientific Reports, 2019, 9, 11505.	1.6	67
88	Engineering heterogeneous microstructure by severe warm-rolling for enhancing strength-ductility synergy in eutectic high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138226.	2.6	67
89	Microstructures and mechanical properties of bulk nanocrystalline Fe–Al–C alloys made by mechanically alloying with subsequent spark plasma sintering. Science and Technology of Advanced Materials, 2004, 5, 133-143.	2.8	66
90	Effect of SiC particles on the microstructure evolution and mechanical properties of aluminum during ARB process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 540, 13-23.	2.6	63

#	Article	IF	Citations
91	Yielding Behavior and Its Effect on Uniform Elongation of Fine Grained IF Steel. Materials Transactions, 2014, 55, 73-77.	0.4	63
92	Two-stage Hall-Petch relationship in Cu with recrystallized structure. Journal of Materials Science and Technology, 2020, 48, 31-35.	5.6	62
93	Anodic oxide nanotube layers on Ti–Ta alloys: Substrate composition, microstructure and self-organization on two-size scales. Corrosion Science, 2009, 51, 1528-1533.	3.0	61
94	Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates. Scripta Materialia, 2009, 60, 590-593.	2.6	60
95	Change in microstructures and mechanical properties during deep wire drawing of copper. Materials Science & Science & Properties, Microstructure and Processing, 2010, 527, 5699-5707.	2.6	60
96	Flow stress analysis for determining the critical condition of dynamic ferrite transformation in $6Ni\hat{a}\in 0.1C$ steel. Acta Materialia, 2013, 61, 163-173.	3.8	59
97	Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel. Scripta Materialia, 2020, 178, 318-323.	2.6	59
98	Bi-lamellar microstructure in Ti–6Al–4V: Microstructure evolution and mechanical properties. Materials Science & Department of the Materials Science & Department of the Materials of the Ma	2.6	58
99	Aging behavior of ultrafine grained Al–2 wt%Cu alloy severely deformed by accumulative roll bonding. Science and Technology of Advanced Materials, 2004, 5, 173-180.	2.8	57
100	Effect of initial grain size on the joint properties of friction stir welded aluminum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 527, 317-321.	2.6	57
101	Deformation behavior of as-cast and as-extruded Mg97Zn1Y2 alloys during compression, as tracked by in situ neutron diffraction. International Journal of Plasticity, 2018, 111, 288-306.	4.1	57
102	Evaluation of Dislocation Density for 1100 Aluminum with Different Grain Size during Tensile Deformation by Using <i>In-Situ</i> X-ray Diffraction Technique. Materials Transactions, 2015, 56, 671-678.	0.4	55
103	Strategy for managing both high strength and large ductility in structural materials–sequential nucleation of different deformation modes based on a concept of plaston. Scripta Materialia, 2020, 181, 35-42.	2.6	55
104	Microstructural and crystallographic features of hydrogen-related fracture in lath martensitic steels. Materials Science and Technology, 2017, 33, 1524-1532.	0.8	54
105	Change in Mechanical Properties and Microstructure of ARB Processed Ti during Annealing. Materials Transactions, 2008, 49, 41-46.	0.4	52
106	Change in Microstructure and Mechanical Properties of Ultra-Fine Grained Aluminum during Annealing. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2000, 64, 429-437.	0.2	51
107	Yielding behavior and its effect on uniform elongation in IF steel with various grain sizes. Journal of Materials Science, 2014, 49, 6536-6542.	1.7	51
108	Effect of Initial Orientation on the Recrystallization Behavior of Solidified Columnar Crystals in a 19% Cr Ferritic Stainless Steel ISIJ International, 1993, 33, 783-792.	0.6	50

#	Article	IF	CITATIONS
109	Microstructure Evolution in Pure Al Processed with Twist Extrusion. Materials Transactions, 2009, 50, 96-100.	0.4	49
110	Effect of Initial Orientation on the Cold Rolling Behavior of Solidified Columnar Crystals in a 19%Cr Ferritic Stainles Steel ISIJ International, 1992, 32, 1319-1328.	0.6	48
111	Post-uniform elongation and tensile fracture mechanisms of Fe-18Mn-0.6C-xAl twinning-induced plasticity steels. Acta Materialia, 2017, 131, 435-444.	3.8	48
112	Formability of ultrafine-grained interstitial-free steel fabricated by accumulative roll-bonding and subsequent annealing. Scripta Materialia, 2011, 65, 175-178.	2.6	46
113	Change of Deformation Mechanisms Leading to High Strength and Large Ductility in Mg-Zn-Zr-Ca Alloy with Fully Recrystallized Ultrafine Grained Microstructures. Scientific Reports, 2019, 9, 11702.	1.6	46
114	Occurrence of Dynamic Recrystallization in Ferritic Iron. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62, 967-976.	0.2	45
115	Cu/Zr nanoscaled multi-stacks fabricated by accumulative roll bonding. Journal of Alloys and Compounds, 2010, 504, S443-S447.	2.8	44
116	Combination of dynamic transformation and dynamic recrystallization for realizing ultrafine-grained steels with superior mechanical properties. Scientific Reports, 2016, 6, 39127.	1.6	42
117	On the strain hardening abilities of $\hat{l}\pm+\hat{l}^2$ titanium alloys: The roles of strain partitioning and interface length density. Journal of Alloys and Compounds, 2019, 811, 152040.	2.8	42
118	Effects of local stress, strain, and hydrogen content on hydrogen-related fracture behavior in low-carbon martensitic steel. Acta Materialia, 2021, 210, 116828.	3.8	42
119	Achieving excellent mechanical properties in type 316 stainless steel by tailoring grain size in homogeneously recovered or recrystallized nanostructures. Acta Materialia, 2022, 226, 117629.	3.8	41
120	Effects of Rolling Reduction and Annealing Temperature on the Recrystallization Structure of Solidified Columnar Crystals in a 19% Cr Ferritic Stainless Steel ISIJ International, 1994, 34, 1008-1017.	0.6	40
121	Enhanced Strength and Ductility in an Ultrafine-Grained Fe-22Mn-0.6C Austenitic Steel Having Fully Recrystallized Structure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5300-5304.	1.1	40
122	Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness. Journal of Materials Science and Technology, 2021, 71, 138-151.	5.6	40
123	Novel thermomechanical processing methods for achieving ultragrain refinement of low-carbon steel without heavy plastic deformation. Materials Research Letters, 2017, 5, 61-68.	4.1	39
124	Effect of Boron Addition on the Microstructure of Hot-deformed Ti-added Interstitial Free Steel ISIJ International, 1997, 37, 797-806.	0.6	38
125	Low Temperature Superplasticity of Ultra-Fine Grained 5083 Aluminium Alloy Produced by Accumulative Roll-Bonding. Materials Science Forum, 1999, 304-306, 73-78.	0.3	38
126	Martensite transformation from ultrafine grained austenite in Fe–28.5at.% Ni. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 233-236.	2.6	38

#	Article	IF	CITATIONS
127	Through-Thickness Characterization of Microstructure and Texture in High Purity Aluminum Processed to High Strain by Accumulative Roll-Bonding. Materials Transactions, 2007, 48, 1978-1985.	0.4	38
128	Temperature and Strain Rate Dependence of Flow Stress in Severely Deformed Copper by Accumulative Roll Bonding. Materials Transactions, 2009, 50, 64-69.	0.4	38
129	Change in Microstructure and Texture during Annealing of Pure Copper Heavily Deformed by Accumulative Roll Bonding. Materials Transactions, 2007, 48, 2043-2048.	0.4	37
130	Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers. Electrochimica Acta, 2009, 54, 5155-5162.	2.6	37
131	Microstructural Evolution during ARB Process of Al–0.2 mass% Sc Alloy Containing Al ₃ Sc Precipitates in Starting Structures. Materials Transactions, 2012, 53, 72-80.	0.4	37
132	Ultrafine grained structure and improved mechanical properties of low temperature friction stir spot welded 6061-T6 Al alloys. Materials Characterization, 2018, 135, 124-133.	1.9	36
133	Crystallographic feature of hydrogen-related fracture in 2Mn-0.1C ferritic steel. International Journal of Hydrogen Energy, 2018, 43, 11298-11306.	3.8	36
134	Achieving bi-lamellar microstructure with both high tensile strength and large ductility in Ti–6Al–4V alloy by novel thermomechanical processing. Materialia, 2019, 8, 100479.	1.3	36
135	Effect of high pressure torsion process on the microhardness, microstructure and tribological property of Ti6Al4V alloy. Journal of Materials Science and Technology, 2021, 94, 183-195.	5.6	36
136	Mechanical properties of ultrafine grained ferritic steel sheets fabricated by rolling and annealing of duplex microstructure. Journal of Materials Science, 2008, 43, 7391-7396.	1.7	34
137	Formation Mechanism of Ultrafine Grained Microstructures: Various Possibilities for Fabricating Bulk Nanostructured Metals and Alloys. Materials Transactions, 2019, 60, 1518-1532.	0.4	34
138	Nature of dynamic ferrite transformation revealed by in-situ neutron diffraction analysis during thermomechanical processing. Scripta Materialia, 2019, 165, 44-49.	2.6	34
139	Quantification of strain in accumulative roll-bonding under unlubricated condition by finite element analysis. Computational Materials Science, 2009, 46, 261-266.	1.4	33
140	Strengthening of Sheath-Rolled Aluminum Based MMC by the ARB Process. Materials Transactions, JIM, 1999, 40, 1422-1428.	0.9	32
141	Fabrication of CuZr(Al) bulk metallic glasses by high pressure torsion. Intermetallics, 2009, 17, 256-261.	1.8	32
142	Synthesis of non-equilibrium phases in immiscible metals mechanically mixed by high pressure torsion. Journal of Materials Science, 2011, 46, 4296-4301.	1.7	32
143	Influence of Tempering on Mechanical Properties of Ferrite and Martensite Dual Phase Steel. Materials Today: Proceedings, 2015, 2, S667-S671.	0.9	32
144	Fracture surface topography analysis of the hydrogen-related fracture propagation process in martensitic steel. International Journal of Fracture, 2017, 205, 73-82.	1.1	32

#	Article	lF	CITATIONS
145	Mechanical and microstructural analysis on hydrogen-related fracture in a martensitic steel. International Journal of Hydrogen Energy, 2019, 44, 29034-29046.	3.8	32
146	High damping capacity of ultra-fine grained aluminum produced by accumulative roll bonding. Journal of Alloys and Compounds, 2003, 355, 47-51.	2.8	31
147	Occurrence of dynamic ferrite transformation in low-carbon steel above Ae3. Scripta Materialia, 2013, 68, 538-541.	2.6	30
148	Influence of Fe addition in CP titanium on phase transformation, microstructure and mechanical properties during high pressure torsion. Journal of Alloys and Compounds, 2020, 822, 153604.	2.8	30
149	Enhanced mechanical properties in \hat{l}^2 -Ti alloy aged from recrystallized ultrafine \hat{l}^2 grains. Materials and Design, 2020, 195, 109017.	3.3	30
150	Formation of bimodal grain structures in high purity Al by reversal high pressure torsion. Scripta Materialia, 2011, 64, 498-501.	2.6	29
151	Critical strain for mechanical alloying of Cu–Ag, Cu–Ni and Cu–Zr by high-pressure torsion. Scripta Materialia, 2011, 65, 489-492.	2.6	29
152	Microstructure and Crystallographic Features of Martensite Transformed from Ultrafine-Grained Austenite in Fe–24Ni–0.3C Alloy. Materials Transactions, 2012, 53, 81-86.	0.4	29
153	Thermomechanical Processing of Steel –Past, Present and Future–. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 1062-1075.	0.1	29
154	Grain size altering yielding mechanisms in ultrafine grained high-Mn austenitic steel: Advanced TEM investigations. Journal of Materials Science and Technology, 2021, 86, 192-203.	5.6	29
155	Unique Mechanical Properties of Nanostructured Metals. Journal of Nanoscience and Nanotechnology, 2007, 7, 3765-3770.	0.9	28
156	Correlation between Continuous/Discontinuous Yielding and Hall–Petch Slope in High Purity Iron. Materials Transactions, 2014, 55, 69-72.	0.4	28
157	Grain Boundary Structure of Ultrafine Grained Pure Copper Fabricated by Accumulative Roll Bonding. Materials Transactions, 2008, 49, 24-30.	0.4	27
158	Dynamic deformation behavior of ultrafine-grained iron produced by ultrahigh strain deformation and annealing. Scripta Materialia, 2011, 64, 896-899.	2.6	27
159	Variant selection of martensite transformation from ultrafine-grained austenite in Fe–Ni–C alloy. Journal of Alloys and Compounds, 2013, 577, S668-S672.	2.8	27
160	Optimizing strength and ductility in Cu–Al alloy with recrystallized nanostructures formed by simple cold rolling and annealing. Journal of Materials Science, 2014, 49, 6629-6639.	1.7	27
161	SEM/EBSD Analysis on Globularization Behavior of Lamellar Microstructure in Ti-6Al-4V During Hot Deformation and Annealing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4237-4246.	1.1	27
162	Effect of severe cold-rolling and annealing on microstructure and mechanical properties of AlCoCrFeNi _{2.1} eutectic high entropy alloy. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012018.	0.3	27

#	Article	IF	CITATIONS
163	Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure. Journal of Alloys and Compounds, 2019, 780, 959-966.	2.8	27
164	Effect of Strain on Microstructures and Mechanical Properties of ARB Processed and Annealed Ultra-low Carbon IF Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2003, 89, 273-280.	0.1	26
165	Effect of strain on "hardening by annealing and softening by deformation―phenomena in ultra-fine grained aluminum. Journal of Materials Science, 2008, 43, 7331-7337.	1.7	26
166	Continuous bending-drawing process to manufacture the ultrafine copper wire with excellent electrical and mechanical properties. CIRP Annals - Manufacturing Technology, 2011, 60, 279-282.	1.7	26
167	Microstructure and Mechanical Properties of Co21Cr22Cu22Fe21Ni14 Processed by High Pressure Torsion and Annealing. Jom, 2015, 67, 2303-2309.	0.9	26
168	A correlation between grain boundary character and deformation twin nucleation mechanism in coarse-grained high-Mn austenitic steel. Scientific Reports, 2021, 11, 8468.	1.6	26
169	Evolution of microstructure and mechanical properties during annealing of heavily rolled AlCoCrFeNi2.1 eutectic high-entropy alloy. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142558.	2.6	26
170	Interdiffusion in Co Solid Solutions of Co-Al-Cr-Ni System at 1423 K. Materials Transactions, 2003, 44, 63-71.	0.4	25
171	Hydrogen embrittlement behaviors of ultrafine-grained 22Mn–0.6C austenitic twinning induced plasticity steel. Journal of Materials Research, 2017, 32, 4592-4604.	1.2	25
172	Annealing Behavior and Recrystallized Texture in ARB Processed Copper. Materials Science Forum, 2006, 503-504, 919-924.	0.3	24
173	Effect of initial microstructure on ultrafine grain formation through warm deformation in medium-carbon steels. Scripta Materialia, 2011, 65, 404-407.	2.6	24
174	Texture Evolution in Al–0.2 mass%Sc Alloy during ARB Process and Subsequent Annealing. Materials Transactions, 2012, 53, 1863-1869.	0.4	24
175	Mesoscopic nature of serration behavior in high-Mn austenitic steel. Acta Materialia, 2021, 205, 116543.	3.8	24
176	Mechanisms of remarkable wear reduction and evolutions of subsurface microstructure and nano-mechanical properties during dry sliding of nano-grained Ti6Al4V alloy: A comparative study. Tribology International, 2022, 169, 107464.	3.0	24
177	Pt diffusion in B2-type ordered NiAl intermetallic compound and its diffusion mechanisms. Science and Technology of Advanced Materials, 2000, 1, 237-249.	2.8	23
178	Mechanical properties of precipitation strengthening Cu-base alloys highly deformed by ARB process. Procedia Engineering, 2011, 10, 2417-2422.	1.2	23
179	Deformation Microstructure and Nucleation of Recrystallization in Hot-deformed Single Crystals of 18%Cr Ferritic Steel ISIJ International, 1998, 38, 380-389.	0.6	22
180	Effect of Vanadium and Niobium on Restoration Behavior after Hot Deformation in Medium Carbon Spring Steels ISIJ International, 1998, 38, 1022-1031.	0.6	22

#	Article	IF	Citations
181	Accumulative Roll-Bonding of 1100 Aluminum. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 790-795.	0.2	22
182	Dynamic Recrystallization in 18% Cr Ferritic Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2000, 86, 349-356.	0.1	22
183	Effect of Strain on Deformation Microstructure and Subsequent Annealing Behavior of IF Steel Heavily Deformed by ARB Process. Materials Science Forum, 2004, 467-470, 341-348.	0.3	22
184	Grain Size Saturation during Severe Plastic Deformation. Materials Science Forum, 2007, 539-543, 2837-2842.	0.3	22
185	Ductility Sensitivity to Stacking Fault Energy and Grain Size in Cu–Al Alloys. Materials Research Letters, 2016, 4, 112-117.	4.1	22
186	Investigation on the hot deformation behaviors and globularization mechanisms of lamellar Ti–6Al–4V alloy within a wide range of deformation temperatures. Materialia, 2019, 8, 100480.	1.3	22
187	Microstructural evolution and mechanical properties of nanostructured Cu/Ni multilayer fabricated by accumulative roll bonding. Journal of Alloys and Compounds, 2020, 819, 152956.	2.8	22
188	Plastic strain-induced sequential martensitic transformation. Scripta Materialia, 2020, 185, 36-41.	2.6	22
189	Fatigue Crack Propagation Behavior in Commercial Purity Ti Severely Deformed by Accumulative Roll Bonding Process. Materials Transactions, 2008, 49, 64-68.	0.4	21
190	Microstructure and mechanical properties of spot friction stir welded ultrafine grained 1050 Al and conventional grained 6061-T6 Al alloys. Materials Science & Department of the Structural Materials: Properties, Microstructure and Processing, 2013, 585, 17-24.	2.6	21
191	Effect of Cobalt-Content on Mechanical Properties of Non-Equiatomic Co–Cr–Ni Medium Entropy Alloys. Materials Transactions, 2020, 61, 587-595.	0.4	21
192	Unique transition of yielding mechanism and unexpected activation of deformation twinning in ultrafine grained Fe-31Mn-3Al-3Si alloy. Scientific Reports, 2021, 11, 15870.	1.6	21
193	Quantitative Analysis of Structure-Strength Relation of Commercial Purity Aluminium Deformed by Accumulative Roll Bonding and Annealed at Low Temperature. Materials Science Forum, 2003, 426-432, 405-410.	0.3	20
194	Growth kinetics of antiphase domain in Ti3Al intermetallic compound. Science and Technology of Advanced Materials, 2004, 5, 19-28.	2.8	20
195	Improvement in Mechanical Properties of a Cu–2.0 mass%Ni–0.5 mass%Si–0.1 mass%Zr Alloy by Combining Both Accumulative Roll-Bonding and Cryo-Rolling with Aging. Materials Transactions, 2013, 54, 1-8.	0.4	20
196	Nanostructured Bulk Copper Fabricated by Accumulative Roll Bonding. Journal of Nanoscience and Nanotechnology, 2007, 7, 3985-3989.	0.9	19
197	Formation Mechanisms of Ultrafine Grained Structures in Severe Plastic Deformation of Metallic Materials. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2008, 94, 582-589.	0.1	19
198	Effect of austenite grain size on kinetics of dynamic ferrite transformation in low carbon steel. Scripta Materialia, 2013, 68, 611-614.	2.6	19

#	Article	IF	CITATIONS
199	Microstructural change due to isochronal annealing in severely plastic-deformed commercial purity aluminium. Philosophical Magazine, 2015, 95, 1139-1149.	0.7	19
200	Microstructure and Mechanical Properties of ARB Processed Aluminium with Different Purities. Materials Transactions, 2016, 57, 1720-1728.	0.4	19
201	Effect of hydrogen on evolution of deformation microstructure in low-carbon steel with ferrite microstructure. Acta Materialia, 2022, 225, 117549.	3.8	19
202	New Routes for Fabricating Ultrafineâ€Grained Microstructures in Bulky Steels without Veryâ€High Strains. Advanced Engineering Materials, 2010, 12, 701-707.	1.6	18
203	Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding between Ultrafine Grained 1050 and 6061-T6 Aluminum Alloys. Metals, 2016, 6, 249.	1.0	18
204	On the Stability of Reversely Formed Austenite and Related Mechanism of Transformation in an Fe-Ni-Mn Martensitic Steel Aided by Electron Backscattering Diffraction and Atom Probe Tomography. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5244-5257.	1.1	18
205	Change in Microstructure during Annealing of Ultrafine Grained Aluminum Produced by ARB. Materials Science Forum, 2002, 396-402, 423-428.	0.3	17
206	Energies of conservative and non-conservative antiphase boundaries in Ti3Al: a first principles study. Philosophical Magazine, 2006, 86, 1243-1259.	0.7	17
207	Solid-state amorphization of Cu + Zr multi-stacks by ARB and HPT techniques. Journal of Materials Science, 2008, 43, 7457-7464.	1.7	17
208	Nanostructured Aluminum and IF Steel Produced by Rolling—a Comparative Study. ISIJ International, 2008, 48, 1080-1087.	0.6	17
209	Effect of Initial Grain Size on the Evolution of {001}〈100〉 Texture in Severely Deformed and Annealed High-Purity Nickel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2769-2780.	1.1	17
210	Direct observation of local chemical ordering in a few nanometer range in CoCrNi medium-entropy alloy by atom probe tomography and its impact on mechanical properties. Physical Review Materials, 2021, 5, .	0.9	17
211	In-situ observation of twinning and detwinning in AZ31 alloy. Journal of Magnesium and Alloys, 2022, 10, 3418-3432.	5.5	17
212	Dynamic deformation behavior of ultrafine grained aluminum produced by ARB and subsequent annealing. Journal of Materials Science, 2008, 43, 7385-7390.	1.7	16
213	Evolution of ultrafine microstructures in commercial purity aluminum heavily deformed by torsion. Journal of Materials Science, 2012, 47, 7841-7847.	1.7	16
214	Identical Area Observations of Deformation-Induced Martensitic Transformation in SUS304 Austenitic Stainless Steel. Materials Transactions, 2013, 54, 308-313.	0.4	16
215	Tensile Deformation of Ultrafine-Grained Fe-Mn-Al-Ni-C Alloy Studied by In Situ Synchrotron Radiation X-ray Diffraction. Crystals, 2020, 10, 1115.	1.0	16
216	Crystallographic analysis of fatigue fracture initiation in 8Ni-0.1C martensitic steel. International Journal of Fatigue, 2021, 143, 105921.	2.8	16

#	Article	IF	CITATIONS
217	Significant Bauschinger effect and back stress strengthening in an ultrafine grained pure aluminum fabricated by severe plastic deformation process. Scripta Materialia, 2022, 211, 114503.	2.6	16
218	In-situ observations of static recrystallization and texture formation in a cold-rolled CoCrFeMnNi high entropy alloy. Scripta Materialia, 2022, 215, 114706.	2.6	16
219	Fabrication of ZrAlNiCu bulk metallic glass composites containing pure copper particles by high-pressure torsion. Journal of Alloys and Compounds, 2010, 492, 149-152.	2.8	15
220	Martensite/austenite interfaces in ultrafine grained Fe–Ni–C alloy. Journal of Materials Science, 2011, 46, 4216-4220.	1.7	15
221	Effects of Si addition on mechanical properties of copper severely deformed by accumulative roll-bonding. Journal of Materials Science, 2011, 46, 4290-4295.	1.7	15
222	Texture evolution in {112} <111> aluminum single crystals processed by severe plastic deformation. Materials Characterization, 2013, 75, 129-137.	1.9	15
223	Mechanical Properties of Bulk Ultrafine Grained Aluminum Fabricated by Torsion Deformation at Various Temperatures and Strain Rates. Materials Transactions, 2014, 55, 106-113.	0.4	15
224	Hydrogen Embrittlement Behavior at Different Strain Rates in Low-carbon Martensitic Steel. Materials Today: Proceedings, 2015, 2, S735-S738.	0.9	15
225	Dynamic Transformation Mechanism for Producing Ultrafine Grained Steels. Advanced Engineering Materials, 2018, 20, 1701016.	1.6	15
226	Deformation-assisted diffusion for the enhanced kinetics of dynamic phase transformation. Materials Research Letters, 2018, 6, 641-647.	4.1	15
227	Fabrication of Bulk Nanostructured Materials by Accumulative Roll Bonding (ARB)., 0,, 235-253.		15
228	Ultra-Fine Grains in Ultra Low Carbon IF Steel Highly Strained by ARB. Materia Japan, 2000, 39, 961-961.	0.1	15
229	Texture Properties of AA8011 Aluminum Alloy Sheet Manufactured by the Accumulative Roll Bonding Process(ARB). Materials Science Forum, 2002, 408-412, 727-732.	0.3	14
230	Matrix strength evaluation of ultra-fine grained steel by nanoindentation. Journal of Materials Research, 2004, 19, 347-350.	1.2	14
231	Development of Variant Analysis Program by Using EBSD Data. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2007, 93, 591-599.	0.1	14
232	Role of Different Kinds of Boundaries Against Cleavage Crack Propagation in Low-Temperature Embrittlement of Low-Carbon Martensitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3261-3268.	1.1	14
233	Unique effect of carbon addition on development of deformation texture through changes in slip activation and twin deformation in heavily cold-rolled Fe-3% Si alloys. Acta Materialia, 2018, 157, 196-208.	3.8	14
234	Effect of thermomechanical processing at α + γ two-phase temperatures on microstructure and mechanical property of 5Mn-0.1C-2Si medium-manganese steel. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 57-66.	2.6	14

#	Article	IF	Citations
235	Effective grain size refinement of an Fe-24Ni-0.3C metastable austenitic steel by a modified two-step cold rolling and annealing process utilizing the deformation-induced martensitic transformation and its reverse transformation. Journal of Materials Research and Technology, 2022, 17, 2690-2700.	2.6	14
236	Recrystallization of solidified columnar crystals in an Fe-36%Ni austenitic alloy. Acta Metallurgica Et Materialia, 1995, 43, 755-768.	1.9	13
237	Formation of Ultra-Fine Grains in 5182 Aluminum Alloy Heavily Rolled at Warm Temperatures. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 243-251.	0.2	13
238	Fabrication and Refinement of $6061(p)/6063$ Aluminum Laminate by Accumulative Roll-Bonding (ARB) Process. Materials Science Forum, 2000, 331-337, 1169-1174.	0.3	13
239	Microstructural Evolution in Pure Copper Severely Deformed by the ARB Process. Materials Science Forum, 2006, 503-504, 615-620.	0.3	13
240	Global view for grain refinement in ultra-low-C IF steel during high-strain deformation at various temperatures and strain rates. Materialia, 2019, 6, 100262.	1.3	13
241	Resistance to mechanically small fatigue crack growth in ultrafine grained interstitial-free steel fabricated by accumulative roll-bonding. International Journal of Fatigue, 2019, 118, 117-125.	2.8	13
242	Unique Mechanical Properties of Nanostructured Metals. Journal of Nanoscience and Nanotechnology, 2007, 7, 3765-3770.	0.9	13
243	Mechanical Properties as a Function of Grain Size in Ultrafine Grained Aluminum and Iron Fabricated by ARB and Annealing Process. Materials Science Forum, 2003, 426-432, 2667-2672.	0.3	12
244	Microstructural Evolution in 36%Ni Austenitic Steel during the ARB Process. Materials Science Forum, 2006, 512, 73-78.	0.3	12
245	Mechanical properties and microstructure of 6061 aluminum alloy severely deformed by ARB process and subsequently aged at low temperatures. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012088.	0.3	12
246	Dynamic Ferrite Transformation Behaviors in 6Ni-0.1C Steel. Jom, 2014, 66, 765-773.	0.9	12
247	Effect of Accumulative Roll Bonding (ARB) and Subsequent Aging on Microstructure and Mechanical Properties of 2024 Al Alloy. Materials Transactions, 2016, 57, 1462-1470.	0.4	12
248	A Concentrated AlCl ₃ –Diglyme Electrolyte for Hard and Corrosion-Resistant Aluminum Electrodeposits. ACS Applied Materials & Diglyme Electrolyte for Hard and Corrosion-Resistant Aluminum Electrodeposits. ACS Applied Materials & Diglyme Electrolyte for Hard and Corrosion-Resistant Aluminum Electrodeposits. ACS Applied Materials & Diglyme Electrolyte for Hard and Corrosion-Resistant Aluminum Electrodeposits. ACS Applied Materials & Diglyme Electrolyte for Hard and Corrosion-Resistant Aluminum Electrodeposits. ACS Applied Materials & Diglyme Electrodeposits. A	4.0	12
249	Effect of Elemental Combination on Microstructure and Mechanical Properties of Quaternary Refractory Medium Entropy Alloys. Materials Transactions, 2020, 61, 577-586.	0.4	12
250	Fabrication of Surface Nanocrystalline Aluminum Alloys. Materials Science Forum, 2003, 426-432, 2753-2758.	0.3	11
251	Densification and Structural Evolution in Spark Plasma Sintering Process of Mechanically Alloyed Nanocrystalline Fe-23Al-6C Powder. Materials Transactions, 2003, 44, 1604-1612.	0.4	11
252	Fabrication of Bulk Metallic Glass Sheet in Cu-47 at% Zr Alloys by ARB and Heat Treatment. Materials Transactions, 2007, 48, 1605-1609.	0.4	11

#	Article	IF	Citations
253	Plastic Flow and Grain Refinement under Simple Shear-Based Severe Plastic Deformation Processing. Materials Science Forum, 0, 604-605, 171-178.	0.3	11
254	Structural change and improvement of the mechanical properties of a lotus-type porous copper by wire-brushing. Journal of Physics: Conference Series, 2009, 165, 012070.	0.3	11
255	Development of highly cube textured nickel superconductor substrate tapes by Accumulative Roll Bonding (ARB). International Journal of Materials Research, 2011, 102, 173-182.	0.1	11
256	High pressure torsion to refine grains in pure aluminum up to saturation: mechanisms of structure evolution and their dependence on strain. Philosophical Magazine, 2012, 92, 2329-2350.	0.7	11
257	Microstructures of Pearlite and Martensite Transformed from Ultrafine-Grained Austenite Fabricated through Cyclic Heat Treatment in Medium Carbon Steels. Materials Transactions, 2013, 54, 1570-1574.	0.4	11
258	A unique three-stage dependence of yielding behavior and strain-hardening ability in Ti-10V-2Fe-3Al alloy on phase fraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 821, 141609.	2.6	11
259	Achieving large super-elasticity through changing relative easiness of deformation modes in Ti-Nb-Mo alloy by ultra-grain refinement. Materials Research Letters, 2021, 9, 223-230.	4.1	11
260	Effect of initial orientation on the cold-rolling behavior of solidified columnar crystals in an Fe-36%Ni austenitic alloy. Acta Metallurgica Et Materialia, 1995, 43, 743-754.	1.9	10
261	Evolution of antiphase domain (APD)/lamella mixed microstructure in Ti–39at%Al single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 478, 147-153.	2.6	10
262	Annealing Behavior of Solution Treated and Aged Al-0.2wt% Sc Deformed by ARB. Materials Science Forum, 2010, 667-669, 211-216.	0.3	10
263	Comparative Analysis of Plastic Flow and Grain Refinement in Pure Aluminium Subjected to Simple Shear-Based Severe Plastic Deformation Processing. Materials Transactions, 2012, 53, 17-25.	0.4	10
264	Fabrication of fine recrystallized grains and their mechanical property in HPT processed pure magnesium. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012074.	0.3	10
265	Evaluation of dislocation density for 1100 aluminum with different grain size during tensile deformation by using In-situ X-ray diffraction technique. Keikinzoku/Journal of Japan Institute of Light Metals, 2014, 64, 463-469.	0.1	10
266	Characterization of microstructure and mechanical property of pure titanium with different Fe addition processed by severe plastic deformation and subsequent annealing. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012020.	0.3	10
267	Microstructure and Texture of A1050 Aluminium Strips Produced by Melt Direct-Rolling Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1996, 60, 708-716.	0.2	9
268	Microtexture of Lamellar Structures in Al Heavily Deformed by Accumulative Roll-Bonding (ARB). Materials Science Forum, 2002, 408-412, 715-720.	0.3	9
269	EBSD and TEM Characterization of Ultrafine Grained High Purity Aluminum Produced by Accumulative Roll-Bonding. Materials Science Forum, 2006, 512, 91-96.	0.3	9
270	Unique Deformation Behaviors of the Ultrafine Grained Aluminum Alloys Fabricated by Accumulative Roll Bonding., 2006,, 227-234.		9

#	Article	IF	Citations
271	Change in Crystal Orientations of a {100} & Description of the Crystal original Crystal Crystal Original Crystal Crystal Original Crystal Original Crystal Original Crystal Original Crystal Original Crystal Orig	0.4	9
272	Effect of Deformation Temperature on Microstructure Evolution in ARB Processed Ultralow Carbon IF Steel. Materials Transactions, 2012, 53, 30-37.	0.4	9
273	Significant change in mechanical properties of deep drawn ultrafine grained copper wire by additional deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 720-723.	2.6	9
274	Formation of Fully Annealed Nanocrystalline Austenite in Fe– Ni– C Alloy. Materials Transactions, 2014, 55, 223-226.	0.4	9
275	Fatigue properties of ARB-processed Ti sheets with crystallographic texture. International Journal of Fatigue, 2016, 92, 18-24.	2.8	9
276	Deformation Induced Martensitic Transformation and Its Initial Microstructure Dependence in a High Alloyed Duplex Stainless Steel. Steel Research International, 2017, 88, 1700169.	1.0	9
277	Ultra-strong, ductile and thermally stable ultrafine grained 5083 Al alloy fabricated by high pressure torsion using pre-sintered powders. Materialia, 2019, 8, 100448.	1.3	9
278	Microstructure evolution during thermomechanical processing in 3Mn-0.1C medium-Mn steel. Materials Science and Technology, 2019, 35, 2101-2108.	0.8	9
279	Investigation on the Microstructure and Mechanical Properties of Ti-1.0Fe Alloy with Equiaxed α + β Microstructures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2851-2862.	1.1	9
280	Ausformed Bainite in SUP7 Spring Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1999, 85, 419-426.	0.1	9
281	Microstructure and Texture of Commercial Purity Aluminum Strips Produced by Melt Direct Rolling. Materials Transactions, JIM, 1998, 39, 252-261.	0.9	8
282	Accumulative Roll Bonding of AA8006, AA8011 and AA5754 Sheets. Materials Science Forum, 2006, 519-521, 1227-1232.	0.3	8
283	In Situ EBSP Analysis of Grain Boundary Migration during Recrystallization in Pure Aluminum Foils. Materials Science Forum, 0, 558-559, 351-356.	0.3	8
284	Evolution of Deformation and Recrystallization Textures in High-Purity Ni and the Ni-5 at. pct W Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2856-2870.	1,1	8
285	High performance of mechanical and electrical properties of Cu-Cr-Zr alloy sheets produced by ARB process and additional thermo-mechanical treatment. Journal of Physics: Conference Series, 2010, 240, 012119.	0.3	8
286	Effect of Aging Treatment on Ultra-Fine Grains and Si-Phase in Al-0.5%Si Alloy Fabricated by ARB Process. Materials Transactions, 2011, 52, 1853-1859.	0.4	8
287	Change in mechanical properties of fine copper wire manufactured by continuous rotary draw bending process. Journal of Materials Processing Technology, 2012, 212, 2505-2513.	3.1	8
288	Cooperative strain accommodation over grains in martensitic transformation from Fe-Ni nanocrystalline austenite. Philosophical Magazine Letters, 2017, 97, 132-139.	0.5	8

#	Article	IF	Citations
289	Investigation of the grain size effect on mechanical properties of Ti-6Al-4V alloy with equiaxed and bimodal microstructures. IOP Conference Series: Materials Science and Engineering, 2017, 219, 012013.	0.3	8
290	Overcoming the strength–ductility trade-off via the formation of a thermally stable and plastically unstable austenitic phase in cold-worked steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 721, 74-80.	2.6	8
291	Ultrafine-grained CuAg7Zr0.05 alloy with fully recrystallized microstructure. Materialia, 2018, 3, 162-168.	1.3	8
292	Investigating the dislocation reactions on $\hat{1}$ 23 $\{111\}$ twin boundary during deformation twin nucleation process in an ultrafine-grained high-manganese steel. Scientific Reports, 2021, 11, 19298.	1.6	8
293	Low Temperature Recrystallization of High Purity Iron Severely Deformed by ARB Process. Materials Science Forum, 2007, 558-559, 357-362.	0.3	7
294	Structure and Mechanical Properties of Severely Deformed Cu-Cr-Zr Alloys Produced by Accumulative Roll-Bonding Process. Materials Science Forum, 0, 584-586, 791-796.	0.3	7
295	Influence of Accumulative Roll Bonding and Cold Rolling Processes on the Precipitation Strengthening Properties for Cu-Ni-P Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2011, 75, 509-515.	0.2	7
296	Changes in Mechanical Characteristics of Pre-Annealed Wires of Cu–Sn Alloy Manufactured by Continuous Draw Bending. Materials Transactions, 2012, 53, 116-122.	0.4	7
297	Stability of {4 4 11} & Description of the stability of the same of the stability of the st	0.4	7
298	Effect of Ferrite Grain Size on Dynamic Tensile Properties of Ultrafine Grained Low Carbon Steels with Various Chemical Compositions. Materials Transactions, 2014, 55, 78-84.	0.4	7
299	Improvement of Uniform Elongation by Low Temperature Annealing in Al-2.5%Mg Alloy Processed by Accumulative Roll Bonding. Materials Transactions, 2015, 56, 803-807.	0.4	7
300	Mechanism of Dynamic Formation of Ultrafine Ferrite Grains during High Temperature Processing in Steel. Advanced Engineering Materials, 2017, 19, 1600778.	1.6	7
301	Reason for high strength and good ductility in dual phase steels composed of soft ferrite and hard martensite. IOP Conference Series: Materials Science and Engineering, 2017, 219, 012008.	0.3	7
302	Effect of Hydrogen on the Substructure of Lenticular Martensite in Fe-31Ni Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4027-4036.	1.1	7
303	Grain refinement mechanisms in BCC ferritic steel and FCC austenitic steel highly deformed under different temperatures and strain rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139708.	2.6	7
304	Microstructure, texture and mechanical properties of sandwiched ARB6/2/6 2N Al fabricated by accumulative roll bonding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817, 141356.	2.6	7
305	Hydrogen embrittlement behaviors at different deformation temperatures in as-quenched low-carbon martensitic steel. International Journal of Hydrogen Energy, 2022, 47, 3131-3140.	3.8	7
306	Formation of Ultrafine Grained Microstructure in Metallic Materials by Severe Plastic Deformation. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2005, 74, 92-96.	0.0	6

#	Article	IF	CITATIONS
307	Bulk Mechanical Alloying of Zr-Cu System by Accumulative Roll Bonding (ARB). Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 643-646.	0.1	6
308	Bulk nanostructured metals and alloys produced by accumulative roll-bonding. , 2011, , 40-58.		6
309	Relationship Between Local Stress Field in Austenite and Variant Selection in Deformation-induced Martensitic Transformation in Fe-24Ni-0.3C Alloy. Materials Today: Proceedings, 2015, 2, S945-S948.	0.9	6
310	Grain Subdivision Mechanism Related to Partial Disclinations in Severe Plastic Deformation: A Molecular Dynamics Study. Materials Transactions, 2016, 57, 1392-1398.	0.4	6
311	Effect of Grain Size on Mechanical Properties of Dual Phase Steels Composed of Ferrite and Martensite. MRS Advances, 2016, 1, 811-816.	0.5	6
312	Thermomechanical Processing of Medium Manganese Steels. Materials Science Forum, 0, 879, 90-94.	0.3	6
313	Characterization of cold-rolled heterogeneous microstructure formed by multimodal deformation in an Fe-Ni-Al-C alloy with lattice softening. Materials and Design, 2018, 153, 166-176.	3.3	6
314	Texture and Mechanical Properties of Al–Mg Alloy with Unimodal and Bimodal Grain-Structures Formed by Accumulative Roll Bonding and Annealing. Materials Transactions, 2018, 59, 1147-1155.	0.4	6
315	Microstructure Evolution and Phase Transformation of Tiâ€1.0 wt%Fe Alloy with an Equiaxed α + β Microstructure during Highâ€Pressure Torsion and Subsequent Annealing. Advanced Engineering Materials, 2019, 21, 1900607.	Initial 1.6	6
316	Hydrogen-Related Fracture Behavior under Constant Loading Tensile Test in As-Quenched Low-Carbon Martensitic Steel. Metals, 2022, 12, 440.	1.0	6
317	Development of Aus-drawing Process in Medium Carbon Spring Steel for Coil Springs. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1999, 85, 411-418.	0.1	5
318	Bulk Fe-Al-C Nanoalloys Made by Mechanically Alloying with Subsequent Spark Plasma Sintering and Their Mechanical Properties. Solid State Phenomena, 2005, 101-102, 103-110.	0.3	5
319	Variant Selection of Plate Martensite in Fe-28.5at.%Ni Alloy. Materials Science Forum, 2006, 512, 117-122.	0.3	5
320	Martensite Transformation of Ultrafine Grained Austenite in Fe-28.5at%Ni Alloy. Materials Science Forum, 2006, 503-504, 913-918.	0.3	5
321	Reversal Straining to Manage Structure in Pure Aluminum under SPD. Materials Science Forum, 0, 584-586, 133-138.	0.3	5
322	Martensitic Transformation from Ultrafine Grained Austenite Fabricated by ARB in Fe-24Ni-0.3C. Materials Science Forum, 2010, 667-669, 361-366.	0.3	5
323	Evolution of Microstructure and Texture During Cold Rolling and Annealing of a Highly Cube-Textured ({001}\$\$ leftlangle {100} ightangle \$\$) Polycrystalline Nickel Sheet. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2442-2452.	1.1	5
324	Ultrafine ferrite formation through cold-rolling and annealing of low-carbon dual-phase steel. Materials Science and Technology, 2015, 31, 745-754.	0.8	5

#	Article	IF	Citations
325	Statistical representation of the microstructure and strength for a two-phase Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 313-319.	2.6	5
326	Understanding on Peculiar Mechanical Properties of Ultrafine Grained Aluminum. Keikinzoku/Journal of Japan Institute of Light Metals, 2019, 69, 555-561.	0.1	5
327	Strain-dependence of deformation microstructures in ultra-low-C IF steel deformed to high strains by torsion at elevated temperatures. Nano Materials Science, 2020, 2, 83-95.	3.9	5
328	Co Diffusion in a B2-Type Ordered NiAl Compound. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2002, 66, 67-74.	0.2	5
329	Effect of constraint on the rolled microstructure of (001)[100] oriented single crystals in an Fe-19%Cr ferritic alloy. Scripta Metallurgica Et Materialia, 1993, 29, 479-484.	1.0	4
330	Internal Friction of Ultrafine-Grained Nickel Produced by Accumulative Roll-Bonding(ARB). Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 997-1003.	0.2	4
331	Ultrafine grained steels managing both high strength and ductility. Journal of Physics: Conference Series, 2009, 165, 012010.	0.3	4
332	Ways to Manage Both Strength and Ductility in Nanostructured Steels., 2011, , 119-129.		4
333	Formation mechanism of ultrafine grained microstructures during severe plastic deformation of aluminum. Keikinzoku/Journal of Japan Institute of Light Metals, 2012, 62, 392-397.	0.1	4
334	Microstructural evolution of metastable austenitic steel during high-pressure torsion and subsequent heat treatment. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012053.	0.3	4
335	Mechanical Properties and Aging Behavior of Ultrafine Grained Al-Ag Alloy Fabricated by Accumulative Roll-Bonding. Materials Science Forum, 0, 794-796, 851-856.	0.3	4
336	Formation of Dillamore orientation during accumulative roll bonding of {001}^ ^lang;100^ ^rang; aluminum single crystal. Keikinzoku/Journal of Japan Institute of Light Metals, 2014, 64, 93-97.	0.1	4
337	Grain refinement of 2Mn-0.1C steel by repetitive heat treatment and recrystallization. IOP Conference Series: Materials Science and Engineering, 2015, 89, 012041.	0.3	4
338	Contactless electrical conductivity measurement of metallic submicron-grain material: Application to the study of aluminum with severe plastic deformation. Review of Scientific Instruments, 2016, 87, 053905.	0.6	4
339	Significant transitions of mechanical properties by changing temperature in Cu-Al alloys with heterogeneous microstructures. Materials Characterization, 2020, 168, 110546.	1.9	4
340	Characteristics of hydrogen-related fatigue fracture in 2Mn-0.1C martensitic steel. International Journal of Hydrogen Energy, 2021, 46, 37509-37517.	3.8	4
341	Direct observation of grain boundary formation in bcc iron through TEM in situ compression test. Scripta Materialia, 2022, 207, 114275.	2.6	4
342	å¾®ç°ç²'軽é‡é‡'属ã®ç"ç©¶å‹•å•ãf¡ã,¿ãf©ã,ãf¼ã®è¦−ç,¹ã•ã,‰. Materia Japan, 2004, 43, 405-410.	0.1	3

#	Article	IF	Citations
343	Diffusion of Si in Ti ₃ Al Intermetallic Compound. Defect and Diffusion Forum, 2005, 237-240, 334-339.	0.4	3
344	Microstructural Evolution during Friction Stir Welding of Ultrafine Grained Al Alloys. Materials Science Forum, 2006, 503-504, 169-174.	0.3	3
345	Evolution of Microstructure and Texture of Pure Al Single Crystal Having {112}<110> Orientation during Severe Plastic Deformation. Advanced Materials Research, 2007, 26-28, 405-408.	0.3	3
346	Bulk Mechanical Alloying of Al/Fe Multilayer by Accumulative Roll-Bonding Process. Advanced Materials Research, 2007, 26-28, 695-698.	0.3	3
347	Analysis of deformation behaviors of ultrafine grained Cu-30%Zn with bimodal grain-size distribution. Journal of Physics: Conference Series, 2010, 240, 012015.	0.3	3
348	Effect of grain size distribution on mechanical properties of ultrafine grained Al severely deformed by ARB process and subsequently annealed. Journal of Physics: Conference Series, 2010, 240, 012111.	0.3	3
349	Preface to the Special Issue on Ultrafine Grained Materials. Journal of Materials Science, 2010, 45, 4543-4544.	1.7	3
350	Mechanical Properties and Crash Worthiness of Ultrafine Grained Multi-Phase Steel Sheets for Automotive Body Applications. SAE International Journal of Materials and Manufacturing, 0, 3, 237-245.	0.3	3
351	Systematic Approach to Clarify the Mechanism of Dynamic Transformation in Fe-6Ni-0.1C Alloy. Advanced Materials Research, 2011, 409, 707-712.	0.3	3
352	Mechanical Properties of Fine-Grained and Ultrafine-Grained Ti-6Al-4V with Equiaxed and Bimodal Microstructures. Materials Science Forum, 2016, 879, 344-349.	0.3	3
353	Ultimate Rolling Texture in Pure Aluminum Highly Deformed by Accumulative Roll Bonding: Taylor Orientation Formed beyond Grain Subdivision. Materials Transactions, 2017, 58, 1127-1133.	0.4	3
354	In-situ neutron diffraction study on the deformation of a TRIP-assisted multi-phase steel composed of ferrite, austenite and martensite. IOP Conference Series: Materials Science and Engineering, 2019, 580, 012036.	0.3	3
355	Challenging Ultra Grain Refinement of Ferrite in Low-C Steel Only by Heat Treatment. Frontiers in Materials, 2020, 7, .	1.2	3
356	Mechanical Properties of Spring Wire Drawn and Tempered at Lower Bainite Region. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1999, 85, 605-612.	0.1	3
357	Hydrogen-related Fatigue Fracture under Various Test Frequencies in Low-carbon Martensitic Steel. ISIJ International, 2022, 62, 2089-2094.	0.6	3
358	Effect of Antiphase Domain Boundaries on Prism Slip in Ti3Al Single Crystals. Materials Research Society Symposia Proceedings, 2002, 753, 1.	0.1	2
359	Effect of Aluminum and Silicon on Magnetic Properties and Microstructures of Fe-Cr-Ni-C-Al and Fe-Cr-Ni-C-Si Alloys. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2003, 89, 803-810.	0.1	2
360	Effect of Excess Vacancies on Antiphase Domain Growth in Fe3Al. Materials Research Society Symposia Proceedings, 2004, 842, 275.	0.1	2

#	Article	IF	CITATIONS
361	Tensile Deformation Behaviors of Ultrafine Grained Al-Fe-Si Alloy Sheets. Materials Science Forum, 2006, 512, 85-90.	0.3	2
362	Microstructure and Mechanical Properties of Al-0.5 at.% X (=Si, Ag, Mg) Alloys Highly Deformed by ARB Process. Materials Science Forum, 2008, 584-586, 547-552.	0.3	2
363	Microstructure and Aging Behavior of Al-0.2wt%Zr Alloy Heavily Deformed by ARB Process. Materials Science Forum, 2008, 584-586, 728-733.	0.3	2
364	Grain Boundary Structures of ARB Processed Aluminum. Materials Science Forum, 2008, 584-586, 716-721.	0.3	2
365	Strain hardening and softening in ultrafine grained Al fabricated by ARB process. Journal of Physics: Conference Series, 2010, 240, 012114.	0.3	2
366	Texture Evolution in ARB Processed Commercial Purity Aluminium. Materials Science Forum, 0, 702-703, 173-176.	0.3	2
367	Microstructures and Mechanical Properties of an Artificially-Aged Al-Mg-Ga Alloy. Materials Science Forum, 0, 794-796, 1032-1037.	0.3	2
368	Crystallographic Characterization of Cleavage Plane in Low-carbon Martensitic Steel. Materials Today: Proceedings, 2015, 2, S655-S658.	0.9	2
369	Local Stress Evaluation During Deformation in SUS304 Austenitic Stainless Steel. Materials Today: Proceedings, 2015, 2, S937-S940.	0.9	2
370	Effect of imposed strain and annealing temperature on uniform elongation in A5052 alloy processed by accumulative roll bonding. Mechanical Engineering Journal, 2016, 3, 16-00139-16-00139.	0.2	2
371	Realizing Ultrafine Grained Steel by Simple Hot Deformation Using Dynamic Transformation and Subsequent Dynamic Recrystallization Mechanisms. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012026.	0.3	2
372	Realizing Structural Metallic Materials with Both High Strength and Large Ductility through Nucleation Control of Different Deformation Modes. Materia Japan, 2021, 60, 8-12.	0.1	2
373	Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals. , 2022, , 3-34.		2
374	Effect of Al Concentration on Growth of Antiphase Domains in Ti3Al. Materials Research Society Symposia Proceedings, 2001, 705, 7101.	0.1	1
375	Diffusion Reactivity between Zinc Plate Layer and Nanocrystalline Surface Layer of IF Steel by Near Surface-Severe Plastic Deformation. Materials Science Forum, 2005, 502, 117-122.	0.3	1
376	Internal Stress Field in Ultrafine Grained Aluminium Fabricated by Accumulative Roll-Bonding. Materials Science Forum, 2006, 512, 123-128.	0.3	1
377	Grain Boundary Structure in ARB Processed Copper. Materials Science Forum, 2006, 503-504, 925-930.	0.3	1
378	Enhancement of Reaction of Zinc on Superficially Nanocrystallized IF Steel by Near Surface-Severe Plasitc Deformation. Materials Science Forum, 2006, 512, 361-366.	0.3	1

#	Article	IF	CITATIONS
379	Mechanical Properties of Ultra-Fine Grained Fe-Cr-Ni Alloy Fabricated by ARB. Advanced Materials Research, 2007, 26-28, 413-416.	0.3	1
380	Microstructure Evolution after Large Strain Deformation in Al-0.13%Mg. Materials Science Forum, 2007, 550, 235-240.	0.3	1
381	Precipitation Behaviors from Ultrafine Grained Al Alloys Fabricated by Severe Plastic Deformation. Materia Japan, 2010, 49, 305-306.	0.1	1
382	Susceptibility to Hydrogen Embrittlement of IF Steel with Ultrafine-Grained Structure Produced by Accumulative Roll-Bonding Process. Materials Science Forum, 2010, 654-656, 1235-1238.	0.3	1
383	Fatigue Fracture Behavior of ARB Processed Aluminum. Materials Science Forum, 2010, 654-656, 2479-2482.	0.3	1
384	Accumulative Roll-Bonding. , 2011, , 1-8.		1
385	Applying nanostructured steel sheets to automotive body structures. , 2011, , 687-714.		1
386	Aging behavior of ultra-fine grained Al^ ^ndash;0.5%Si^ ^ndash;0.5%Ge alloy fabricated using ARB process. Keikinzoku/Journal of Japan Institute of Light Metals, 2012, 62, 442-447.	0.1	1
387	Recrystallization Texture of Heavily Cold Rolled Polycrystalline Nickel Sheets with and without Strong Starting Cube Texture. Materials Science Forum, 2013, 753, 293-296.	0.3	1
388	Nanocrystalline Twinning Induced Plasticity Steel with Superior Mechanical Properties Fabricated by Cold Rolling and Annealing. Materials Science Forum, 0, 753, 518-521.	0.3	1
389	Improvement of Mechanical Properties by Two-Step Aging in Ultrafine Grained Al-Ag-Sc Alloy. Materials Science Forum, 0, 794-796, 857-863.	0.3	1
390	Aging Behavior of Ultra-Fine Grained Al–0.5%Si–0.5%Ge Alloy Fabricated by ARB Process. Materials Transactions, 2014, 55, 249-254.	0.4	1
391	Special Issue on Advanced Materials Science in Bulk Nanostructured Metals III. Materials Transactions, 2016, 57, 1385-1385.	0.4	1
392	Effect of Precipitate on Microstructure Evolution and Hardness of Al-Cu Alloy during Torsion Deformation. Materials Science Forum, 0, 872, 33-37.	0.3	1
393	Enhanced mechanical properties in fully recrystallized ultrafine grained ZKX600 Mg alloy. IOP Conference Series: Materials Science and Engineering, 2017, 219, 012055.	0.3	1
394	Microstructures and mechanical property of a Fe-Ni-Al-C alloy containing B2 intermetallic compounds. IOP Conference Series: Materials Science and Engineering, 2017, 219, 012020.	0.3	1
395	Change of deformation mechanisms in ultrafine grained Mg-Zn-Zr-Ca alloy. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012016.	0.3	1
396	Influence of Grain Size on Work-Hardening Behavior of Fe-24Ni-0.3C Metastable Austenitic Steel. Minerals, Metals and Materials Series, 2018, , 95-98.	0.3	1

#	Article	IF	Citations
397	Possibility of Microstructure Control in High Entropy Alloys. Materia Japan, 2018, 57, 317-322.	0.1	1
398	Microstructure Evolution and Change in Mechanical Properties of Medium Mn Steels during Thermomechanical Processing. Materials Science Forum, 2018, 941, 346-351.	0.3	1
399	Deformation microstructures and strength of face-centered cubic high/medium entropy alloys. IOP Conference Series: Materials Science and Engineering, 2019, 580, 012053.	0.3	1
400	Deformation behavior study in a model dual phase system of copper–martensitic steel using in-situ synchrotron X-ray diffraction. IOP Conference Series: Materials Science and Engineering, 2020, 895, 012002.	0.3	1
401	Microstructure and Texture Evolution During the Accumulative Roll Bonding of Pure Ni., 2009,, 421-429.		1
402	Effect of Prior Austenite Grain Size on Hydrogen Embrittlement Behaviors In 8Ni-0.1C Steel. , 2013, , 583-589.		1
403	Ductility and Formability of Ultrafine-Grained Metallic Materials. Journal of the Japan Society for Technology of Plasticity, 2017, 58, 196-201.	0.0	1
404	Ultra-Grain Refinement of High Entropy Alloys. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 113-120.	0.1	1
405	Orientation Analysis of Ultra-fine Grained Bulk Materials Produced by Accumulative Roll-bonding (ARB) Process by the Use of EBSP Technique. Microscopy and Microanalysis, 2002, 8, 676-677.	0.2	O
406	Measurement of Internal Stress in Ultrafine Grained Aluminium by CBED. Materia Japan, 2005, 44, 985-985.	0.1	0
407	Evolution of Antiphase Domains and \hat{I}^3 Lamellae in Ti-39at%Al Single Crystals. Materials Research Society Symposia Proceedings, 2006, 980, 5.	0.1	0
408	Reaction of Sn to Nanocrystalline Surface Layer of Cu by Near Surface Severe Plastic Deformation. Solid State Phenomena, 2007, 127, 115-120.	0.3	0
409	Ultrasonic Spectroscopy and X-Ray Diffraction Study for ARB Aluminum. Materials Science Forum, 2007, 561-565, 937-940.	0.3	0
410	Microstructure homogeneity and mechanical properties of electrodeposited nanocrystalline Ni. Journal of Physics: Conference Series, 2009, 165, 012003.	0.3	0
411	Development of Textured Coated Superconductor Substrate Tapes by Severe Plastic Deformation Processing. Materials Science Forum, 2010, 667-669, 1189-1194.	0.3	0
412	Nanostructure Formation during Deep Wire-Drawing of Copper. Materials Science Forum, 2010, 654-656, 1201-1204.	0.3	0
413	High-Temperature Severe Plastic Deformation of Ferritic Steel by Torsion. Materials Science Forum, 2010, 667-669, 403-408.	0.3	0
414	Effect of Ultrahigh Straining on the Evolution of Cube Texture ({100}<100>) in High Purity Nickel. Materials Science Forum, 0, 702-703, 406-410.	0.3	0

#	Article	IF	CITATIONS
415	Stability of Cube Oriented Grains during Cold-Rolling of Highly Cube-Oriented Polycrystalline Nickel. Materials Science Forum, 0, 702-703, 402-405.	0.3	O
416	Development of Cube Texture in Pure Ni Following Ultrahigh Straining by Accumulative Roll Bonding and Annealing. Materials Science Forum, 0, 715-716, 521-521.	0.3	0
417	Nanostructured steel for automotive body structures. , 2012, , 57-84.		0
418	Crystallographic Features of Martensite Transformed from Ultrafine Grained Austenite Fabricated by Severe Plastic Deformation. Materials Science Forum, 0, 706-709, 1835-1840.	0.3	0
419	Dislocation Density Changes in Ultrafine-grain Aluminum during Tensile Deformation. , 2012, , 61-66.		0
420	Characterization of Defects in Severely Deformed Iron by Mechanical Spectroscopy. Solid State Phenomena, 2012, 184, 233-238.	0.3	0
421	Dynamic Softening of Flow Stress during Dynamic Ferrite Transformation. Materials Science Forum, 2013, 753, 510-513.	0.3	0
422	Cross-Sectional Distributions of Mechanical Properties of Fine Cu& ndash; Sn Alloy Wire Manufactured by Continuous Rotary Draw Bending. Materials Transactions, 2013, 54, 1634-1641.	0.4	0
423	Enhancement in Strength of a Cu-1.4 mass%Ni-0.25 mass%P-0.1 mass%Zr Alloy by Cryo-Rolling and Aging. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 55-58.	0.2	0
424	Microstructural evolution of Ti-added interstitial free steel in high strain deformation by hot torsion. IOP Conference Series: Materials Science and Engineering, 2015, 89, 012025.	0.3	0
425	Strength and Ductility of Ultrafine Grained ZKX600 Mg Alloy. , 2016, , 245-250.		0
426	The Effect of Initial Microstructure on the Mechanical Properties of Bi-lamellar Ti-6Al-4V., 2016,, 633-640.		0
427	Structural refinement and property optimization in an Fe-23Cr-8.5Ni duplex stainless steel. IOP Conference Series: Materials Science and Engineering, 2017, 219, 012045.	0.3	0
428	Relationship Between Applied Stress and Hydrogen-Related Fracture Behavior in Martensitic Steel. Minerals, Metals and Materials Series, 2018, , 227-231.	0.3	0
429	Unique Effect of Carbon Addition on Development of Deformation and Recrystallization Textures in Heavily Cold-Rolled Fe-3%Si Alloys. Materials Science Forum, 2018, 941, 890-895.	0.3	0
430	Effect of Grain Size on Mechanical Properties of Mg-0.3at.%Y Dilute Alloy. Materials Science Forum, 2018, 941, 790-795.	0.3	0
431	Grain refinement and age precipitation in aluminum alloys using ARB process. Keikinzoku/Journal of Japan Institute of Light Metals, 2019, 69, 149-156.	0.1	0
432	Linking local and heterogeneous deformation behavior to global deformation of materials by in-situ experimental techniques. IOP Conference Series: Materials Science and Engineering, 2019, 580, 012012.	0.3	0

#	Article	IF	Citations
433	Editorial: Trends and Advances in Nano-Structured Materials With Novel Structures and Properties. Frontiers in Materials, 2020, 7, .	1.2	O
434	Heterogeneity and Homogeneity in $2/4 {\rm \hat{A}} N$ Multilayered Al Fabricated by Accumulative Roll Bonding and Annealing. Journal of Materials Engineering and Performance, 2020, 29, 6147-6154.	1.2	0
435	Effect of Hydrogen on Evolution of Deformation Microstructure in Low-Carbon Steel with Ferrite Microstructure. SSRN Electronic Journal, 0, , .	0.4	0
436	Advanced Thermomechanical Processing of Steels. , 2022, , 223-234.		0
437	Crystallographic Analysis of Lenticular (Plate) Martensite in 30 mass% Ni Steel by EBSP Method. Materia Japan, 2003, 42, 880-880.	0.1	0
438	Crystallographic Features of Lath Martensite in 0.20%C Steel Analyzed by FE-SEM/EBSD. Materia Japan, 2005, 44, 982-982.	0.1	0
439	Reversible Texture Transition during Accumulative Roll Bonding. Ceramic Transactions, 0, , 669-680.	0.1	0
440	Evolution of Ultrafine Grained Structures in Metals during Severe Plastic Deformation by ARB Process. Journal of the Japan Society for Technology of Plasticity, 2009, 50, 177-180.	0.0	0
441	Aging Behavior of Ultrafine Grained Commercial Al-Mg-Si Alloy Severely Deformed by ARB Process. , 2013, , 3259-3264.		0
442	Characteristics of Deformation Induced Martensite in SUS304 Austenitic Stainless Steel Deformed at RT and $\hat{a}^{-2}60\hat{A}^{-2}C$., 2013, , 563-569.		0
443	Microstructural Evolution of Ferrite Grains during Dynamic Transformation in 10Ni-0.1C Steel. , 2014, , 919-926.		0
444	Production of Al-Cu superplastic sheets by means of the melt direct rolling Keikinzoku/Journal of Japan Institute of Light Metals, 1999, 49, 395-400.	0.1	0
445	OS7-11 Effect of Strain on Uniform Elongation Improved by Low-Temperature Annealing in A5052 Alloy Deformed by Accumulative Roll Bonding(Stress and strain measurement III,OS7 Stress and strain) Tj ETQq1 1 0.2 Technology in Experimental Mechanics Asian Conference on Experimental Mechanics. 2015. 2015.14. 102.	784314 rg 0.0	BT/Overlock
446	Grain Refinement and Texture Evolution in Highly Deformed Ferrite During High-Temperature Torsion Deformation of IF Steel., 2016, , 71-78.		0
447	Strength and Ductility of Ultrafine Grained ZKX600 Mg Alloy. , 2016, , 245-250.		0
448	Grain Refinement and Texture Evolution in Highly Deformed Ferrite During High-Temperature Torsion Deformation of if Steel., 0,, 71-78.		0
449	Preface to Special Issue on Recent Advances in the Understanding of Peculiar Properties of High-Entropy Alloys. Materia Japan, 2018, 57, 311-311.	0.1	0
450	Unique Deformation Behavior and Microstructure Evolution in High Temperature Processing of HfNbTaTiZr Refractory High Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
451	Achieving Bi-Lamellar Microstructure with Both High Tensile Strength and Large Ductility in Ti-6Al-4V Alloy by Novel Thermomechanical Processing. SSRN Electronic Journal, 0, , .	0.4	O
452	Investigation on the Hot Deformation Behaviors and Globularization Mechanisms of Lamellar Ti-6Al-4V Alloy within a Wide Range of Deformation Temperatures. SSRN Electronic Journal, 0, , .	0.4	0
453	Grain Size Altering Yielding Mechanisms in Ultrafine Grained High-Mn Austenitic Steel: Advanced TEM Investigations. SSRN Electronic Journal, 0, , .	0.4	O
454	Influence of microtexture on ultrasonic reflection in Ti-6Al-4V alloy hot-forged in $\hat{l}\pm +\hat{l}^2$ region. MATEC Web of Conferences, 2020, 321, 11021.	0.1	0
455	Editorial: New Developments and Challenges in Advanced High-Strength Steels. Frontiers in Materials, 2021, 8, .	1.2	0