Young Ha Rhee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3416181/publications.pdf

Version: 2024-02-01

201575 223716 2,314 67 27 46 h-index citations g-index papers 67 67 67 2887 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biodegradation of microbial and synthetic polyesters by fungi. Applied Microbiology and Biotechnology, 2003, 61, 300-308.	1.7	202
2	Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. Journal of Microbiology, 2010, 48, 559-565.	1.3	176
3	<p>Shape-dependent antimicrobial activities of silver nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 2773-2780.	3.3	159
4	Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. Journal of Microbiology, 2007, 45, 87-97.	1.3	132
5	Antifungal activity of magnolol and honokiol. Archives of Pharmacal Research, 2000, 23, 46-49.	2.7	112
6	Imparting durable antimicrobial properties to cotton fabrics using alginate–quaternary ammonium complex nanoparticles. Carbohydrate Polymers, 2010, 79, 1057-1062.	5.1	89
7	Polyester synthesis genes associated with stress resistance are involved in an insect–bacterium symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2381-9.	3.3	86
8	Microbial leaching of metals from solid industrial wastes. Journal of Microbiology, 2014, 52, 1-7.	1.3	79
9	Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. International Journal of Biological Macromolecules, 2000, 28, 23-29.	3.6	67
10	Cloning and characterization of a modular GH5 \hat{l}^2 -1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. Bioresource Technology, 2011, 102, 9185-9192.	4.8	52
11	Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility. International Journal of Biological Macromolecules, 2003, 32, 17-22.	3.6	51
12	Effect of alkaline protease-producing Exiguobacterium sp. YS1 inoculation on the solubilization and bacterial community of waste activated sludge. Bioresource Technology, 2009, 100, 4597-4603.	4.8	44
13	PHAs Produced by Pseudomonas putida and Pseudomonas oleovorans Grown with n-Alkanoic Acids Containing Aromatic Groups. Macromolecules, 1999, 32, 6058-6064.	2.2	43
14	Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: Biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Bioresource Technology, 2010, 101, 8814-8821.	4.8	43
15	A highly active endo- \hat{l}^2 -1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme and Microbial Technology, 2011, 48, 365-370.	1.6	41
16	Preparation of alginate–quaternary ammonium complex beads and evaluation of their antimicrobial activity. International Journal of Biological Macromolecules, 2007, 41, 36-41.	3.6	40
17	Biocompatibility and antimicrobial activity of poly(3-hydroxyoctanoate) grafted with vinylimidazole. International Journal of Biological Macromolecules, 2012, 50, 310-316.	3.6	39
18	Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Streptomyces sp. KJ-72. Antonie Van Leeuwenhoek, 2003, 83, 183-189.	0.7	38

#	Article	IF	Citations
19	Enzymatic and non-enzymatic degradation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolyesters produced by Alcaligenes sp. MT-16. Journal of Microbiology, 2004, 42, 346-52.	1.3	38
20	UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly(3-hydroxyoctanoate) to reduce protein adsorption and platelet adhesion. International Journal of Biological Macromolecules, 2005, 35, 47-53.	3 . 6	37
21	Glow discharge plasma-induced immobilization of heparin and insulin on polyethylene terephthalate film surfaces enhances anti-thrombogenic properties. Materials Science and Engineering C, 2009, 29, 796-805.	3.8	36
22	Bacterial Poly(3-hydroxyalkanoates) Bearing Carbonâ^Carbon Triple Bonds. Macromolecules, 1998, 31, 4760-4763.	2.2	34
23	Preparation and cell compatibility of acrylamide-grafted poly(3-hydroxyoctanoate). International Journal of Biological Macromolecules, 2002, 30, 129-135.	3.6	31
24	Poly-3-hydroxyalkanoates Produced fromPseudomonas oleovoransGrown with ï‰-Phenoxyalkanoates. Macromolecules, 1996, 29, 3432-3435.	2.2	30
25	Influence of bias voltage on diamond like carbon (DLC) film deposited on polyethylene terephthalate (PET) film surfaces using PECVD and its blood compatibility. Diamond and Related Materials, 2010, 19, 1085-1092.	1.8	30
26	Novel modular endo- $\hat{1}^2$ -1,4-xylanase with transglycosylation activity from Cellulosimicrobium sp. strain HY-13 that is homologous to inverting GH family 6 enzymes. Bioresource Technology, 2012, 107, 25-32.	4.8	30
27	Genetic and functional characterization of an extracellular modular GH6 endo- \hat{l}^2 -1,4-glucanase from an earthworm symbiont, Cellulosimicrobium funkei HY-13. Antonie Van Leeuwenhoek, 2016, 109, 1-12.	0.7	30
28	Biosynthesis of medium-chain-length poly(3-hydroxyalkanoates) by volatile aromatic hydrocarbons-degrading Pseudomonas fulva TY16. Bioresource Technology, 2010, 101, 8485-8488.	4.8	28
29	Characterization of an Extracellular Medium-Chain-Length Poly(3-hydroxyalkanoate) Depolymerase fromPseudomonasalcaligenesLB19. Biomacromolecules, 2002, 3, 291-296.	2.6	26
30	Biocatalytic properties and substrate-binding ability of a modular GH10 \hat{l}^2 -1,4-xylanase from an insect-symbiotic bacterium, Streptomyces mexicanus HY-14. Journal of Microbiology, 2014, 52, 863-870.	1.3	25
31	Purification and characterization of extracellular medium-chain-length polyhydroxyalkanoate depolymerase from Pseudomonas sp. RY-1. Journal of Bioscience and Bioengineering, 2000, 89, 196-198.	1.1	21
32	Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molar fractions of 3-hydroxyvalerate by a threonine-overproducing mutant of Alcaligenes sp. SH-69. Biotechnology Letters, 2003, 25, 665-670.	1.1	21
33	Production of medium-chain-length polyhydroxyalkanoates by activated sludge enriched under periodic feeding with nonanoic acid. Bioresource Technology, 2011, 102, 6159-6166.	4.8	21
34	Drug release from and hydrolytic degradation of a poly(ethylene glycol) grafted poly(3-hydroxyoctanoate). International Journal of Biological Macromolecules, 2005, 36, 84-89.	3.6	20
35	Effect of dc glow discharge plasma treatment on PET/TiO2 thin film surfaces for enhancement of bioactivity. Colloids and Surfaces B: Biointerfaces, 2010, 79, 53-60.	2.5	20
36	Characterization of an extracellular poly(3-hydroxyoctanoate) depolymerase from the marine isolate, Pseudomonas luteola M13-4. Enzyme and Microbial Technology, 2006, 38, 529-535.	1.6	19

#	Article	IF	Citations
37	<i>In vitro</i> Cyto and Blood Compatibility of Titanium Containing Diamond-Like Carbon Prepared by Hybrid Sputtering Method. Plasma Science and Technology, 2012, 14, 829-836.	0.7	19
38	Paclitaxel-incorporated nanoparticles using block copolymers composed of poly(ethylene) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 702 Td
39	Genetic and functional characterization of a novel GH10 endo- \hat{l}^2 - 1,4-xylanase with a ricin-type \hat{l}^2 -trefoil domain-like domain from Luteimicrobium xylanilyticum HY-24. International Journal of Biological Macromolecules, 2018, 106, 620-628.	3.6	19
40	Novel Alkali-Tolerant GH10 Endo- \hat{l}^2 -1,4-Xylanase with Broad Substrate Specificity from Microbacterium trichothecenolyticum HY-17, a Gut Bacterium of the Mole Cricket Gryllotalpa orientalis. Journal of Microbiology and Biotechnology, 2014, 24, 943-953.	0.9	19
41	Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12. Journal of Microbiology and Biotechnology, 2017, 27, 990-994.	0.9	18
42	Graft copolymerization of glycerol 1,3-diglycerolate diacrylate onto poly(3-hydroxyoctanoate) to improve physical properties and biocompatibility. International Journal of Biological Macromolecules, 2008, 43, 307-313.	3.6	17
43	Phenolic compounds in different parts of young Annona muricata cultivated in Korea and their antioxidant activity. Applied Biological Chemistry, 2017, 60, 535-543.	0.7	17
44	Preparation and hydrolytic degradation of semi-interpenetrating networks of poly(3-hydroxyundecenoate) and poly(lactide-co-glycolide). International Journal of Biological Macromolecules, 2005, 37, 221-226.	3.6	16
45	Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolyesters with a high molar fraction of 3-hydroxyvalerate by an insect-symbiotic Burkholderia sp. IS-01. Journal of Microbiology, 2009, 47, 651-656.	1.3	16
46	Antioxidant Activities and Phenolic Compounds of Several Tissues of Pawpaw (<i>Asimina triloba</i>) Tj ETQq0 (0 O _{.rg} BT /0	Overlock 10 Tf
47	Molecular characterization of extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase genes from Pseudomonas alcaligenes strains. Journal of Microbiology, 2005, 43, 285-94.	1.3	16
48	Cometabolic biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82. Antonie Van Leeuwenhoek, 2001, 80, 185-191.	0.7	15
49	Analysis of Bacterial Community in the Ginseng Soil Using Denaturing Gradient Gel Electrophoresis (DGGE). Indian Journal of Microbiology, 2012, 52, 286-288.	1.5	15
50	Biosynthesis of polyhydroxyalkanoate copolyester containing cyclohexyl groups by Pseudomonas oleovorans. International Journal of Biological Macromolecules, 2001, 29, 145-150.	3.6	14
51	Phenolic Profiles, Antioxidant and Antimicrobial Activities of Pawpaw Pulp (<i>Asimina triloba</i> [L.]) Tj ETQq1	1 0,78431 1.5	.4 rgBT /Overlo
52	Photochemical Crosslinking and Enzymatic Degradation of Poly(3-hydroxyalkanoate)s for Micropatterning in Photolithography. Macromolecular Rapid Communications, 2001, 22, 1066-1071.	2.0	11
53	Overexpression of the (R)-Specific Enoyl-CoA Hydratase Gene fromPseudomonas chlororaphisHS21 inPseudomonasStrains for the Biosynthesis of Polyhydroxyalkanoates of Altered Monomer Composition. Bioscience, Biotechnology and Biochemistry, 2012, 76, 613-616.	0.6	9
54	Carboxymethyl cellulases active and stable at alkaline pH from alkalophilic Cephalosporium sp. RYM-202. Biotechnology Letters, 1995, 17, 507-512.	1.1	8

#	Article	IF	CITATIONS
55	Effects of amino acid addition on molar fraction of 3-hydroxyvalerate in copolyester of 3-hydroxybutyrate and 3-hydroxyvalerate synthesized by Alcaligenes sp. SH-69. Journal of Bioscience and Bioengineering, 1995, 80, 350-354.	0.9	8
56	Biocatalytic characterization of an endo- $\hat{1}^2$ -1,4-mannanase produced by Paenibacillus sp. strain HY-8. Biotechnology Letters, 2017, 39, 149-155.	1.1	8
57	Analysis of Medium-Chain-Length Polyhydroxyalkanoate-Producing Bacteria in Activated Sludge Samples Enriched by Aerobic Periodic Feeding. Microbial Ecology, 2018, 75, 720-728.	1.4	8
58	Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolyesters produced byAlcaligenes sp. MT-16. Biotechnology and Bioprocess Engineering, 2005, 10, 540-545.	1.4	5
59	Correlation Between Acetogenin Content and Antiproliferative Activity of Pawpaw (<i>Asimina) Tj ETQq1 1 0.78</i>	1314 rgBT 1.5	/Qverlock 10
60	Preparation and biocompatibility of crosslinked poly(3-hydroxyundecenoate). International Journal of Biological Macromolecules, 2018, 107, 276-282.	3.6	4
61	Title is missing!. Biotechnology Letters, 1998, 20, 969-975.	1.1	3
62	Molecular Diversity of Rhizobacteria in Ginseng Soil and Their Plant Benefiting Attributes. Korean Journal of Microbiology, 2012, 48, 246-253.	0.2	3
63	Non-ionic polysorbate surfactants: Alternative inducers of medium-chain-length poly(3-hydroxyalkanoates) (MCL-PHAs) for production of extracellular MCL-PHA depolymerases. Bioresource Technology, 2012, 121, 47-53.	4.8	2
64	The growth-inhibitory effects of pawpaw (Asimina triloba [L.] Dunal) roots, twigs, leaves, and fruit against human gastric (AGS) and cervical (HeLa) cancer cells and their anti-inflammatory activities. Molecular Biology Reports, 2021, 48, 2173-2181.	1.0	2
65	Stable expression and secretion of polyhydroxybutyrate depolymerase of Paucimonas lemoignei in Escherichia coli. Journal of Microbiology, 2008, 46, 662-669.	1.3	1
66	Preparation and In Vitro Release Studies of Ibuprofen Loaded Nanoparticles Made from PHO and PEGMA-g-PHO. Journal of Nanoscience and Nanotechnology, 2019, 19, 1180-1183.	0.9	0
67	Substrate chain-length specificities of polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa P-5. Korean Journal of Microbiology, 2016, 52, 455-462.	0.2	O