
Richard W Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3416150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NSP9 of SARS-CoV-2 attenuates nuclear transport by hampering nucleoporin 62 dynamics and functions in host cells. Biochemical and Biophysical Research Communications, 2022, 586, 137-142.	2.1	18
2	Discovery of a Novel Aminocyclopropenone Compound That Inhibits BRD4-Driven Nucleoporin NUP210 Expression and Attenuates Colorectal Cancer Growth. Cells, 2022, 11, 317.	4.1	2
3	Inhibition of Canonical Wnt Signaling Promotes Ex Vivo Maintenance and Proliferation of Hematopoietic Stem Cells in Zebrafish. Stem Cells, 2022, 40, 831-842.	3.2	5
4	Nucleoporin TPR (translocated promoter region, nuclear basket protein) upregulation alters MTOR-HSF1 trails and suppresses autophagy induction in ependymoma. Autophagy, 2021, 17, 1001-1012.	9.1	30
5	Overexpression of SARS-CoV-2 protein ORF6 dislocates RAE1 and NUP98 from the nuclear pore complex. Biochemical and Biophysical Research Communications, 2021, 536, 59-66.	2.1	54
6	CDK8 maintains stemness and tumorigenicity of glioma stem cells by regulating the c-MYC pathway. Oncogene, 2021, 40, 2803-2815.	5.9	33
7	High-Speed Atomic Force Microscopy Reveals Spatiotemporal Dynamics of Histone Protein H2A Involution by DNA Inchworming. Journal of Physical Chemistry Letters, 2021, 12, 3837-3846.	4.6	14
8	How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells, 2021, 10, 1424.	4.1	20
9	New Activities of the Nuclear Pore Complexes. Cells, 2021, 10, 2123.	4.1	9
10	A light-switching pyrene probe to detect phase-separated biomolecules. IScience, 2021, 24, 102865.	4.1	11
11	Label-free tomographic imaging of nanodiamonds in living cells. Diamond and Related Materials, 2021, 118, 108517.	3.9	6
12	Synthetic zwitterions as efficient non-permeable cryoprotectants. Communications Chemistry, 2021, 4,	4.5	13
13	Millisecond dynamic of SARS oVâ€⊋ spike and its interaction with ACE2 receptor and small extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12170.	12.2	21
14	Direct visualization of avian influenza H5N1 hemagglutinin precursor and its conformational change by high-speed atomic force microscopy. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129313.	2.4	16
15	Disease-specific alteration of karyopherin-α subtype establishes feed-forward oncogenic signaling in head and neck squamous cell carcinoma. Oncogene, 2020, 39, 2212-2223.	5.9	28
16	High-Speed AFM Reveals Molecular Dynamics of Human Influenza A Hemagglutinin and Its Interaction with Exosomes. Nano Letters, 2020, 20, 6320-6328.	9.1	25
17	Spatiotemporally tracking of nano-biofilaments inside the nuclear pore complex core. Biomaterials, 2020, 256, 120198.	11.4	23
18	Karyopherin-β1 Regulates Radioresistance and Radiation-Increased Programmed Death-Ligand 1 Expression in Human Head and Neck Squamous Cell Carcinoma Cell Lines. Cancers, 2020, 12, 908.	3.7	9

RICHARD W WONG

#	Article	IF	CITATIONS
19	Nucleoporin Nup58 localizes to centrosomes and mid-bodies during mitosis. Cell Division, 2019, 14, 7.	2.4	6
20	NPCs in Mitosis and Chromosome Segregation. , 2018, , 219-240.		1
21	<scp>ROCK</scp> â€dependent phosphorylation of <scp>NUP</scp> 62 regulates p63 nuclear transport and squamous cell carcinoma proliferation. EMBO Reports, 2018, 19, 73-88.	4.5	56
22	Targeting Nucleoporin POM121-Importin β Axis in Prostate Cancer. Cell Chemical Biology, 2018, 25, 1056-1058.	5.2	16
23	Colorectal cancer cells require glycogen synthase kinase-3β for sustaining mitosis via translocated promoter region (TPR)-dynein interaction. Oncotarget, 2018, 9, 13337-13352.	1.8	22
24	High-Speed Atomic Force Microscopy Reveals Loss of Nuclear Pore Resilience as a Dying Code in Colorectal Cancer Cells. ACS Nano, 2017, 11, 5567-5578.	14.6	46
25	Linking Nucleoporins, Mitosis, and Colon Cancer. Cell Chemical Biology, 2016, 23, 537-539.	5.2	8
26	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
27	Therapeutic potential of mitotic interaction between the nucleoporin Tpr and aurora kinase A. Cell Cycle, 2015, 14, 1447-1458.	2.6	24
28	Nuclear Pore Complex: From Structural View to Chemical Tools. Chemistry and Biology, 2015, 22, 1285-1287.	6.0	16
29	Impact of Nucleoporin-Mediated Chromatin Localization and Nuclear Architecture on HIV Integration Site Selection. Journal of Virology, 2015, 89, 9702-9705.	3.4	39
30	Nucleoporin Nup98 mediates galectin-3 nuclear-cytoplasmic trafficking. Biochemical and Biophysical Research Communications, 2013, 434, 155-161.	2.1	23
31	Nucleoporin Nup62 maintains centrosome homeostasis. Cell Cycle, 2013, 12, 3804-3816.	2.6	48
32	Regulation of autophagy by nucleoporin Tpr. Scientific Reports, 2012, 2, 878.	3.3	46
33	The role of nuclear pore complex in tumor microenvironment and metastasis. Cancer and Metastasis Reviews, 2011, 30, 239-251.	5.9	34
34	Unexpected role of nucleoporins in coordination of cell cycle progression. Cell Cycle, 2011, 10, 425-433.	2.6	38
35	RNA export factor RAE1 contributes to NUP98-HOXA9-mediated leukemogenesis. Cell Cycle, 2011, 10, 1456-1467.	2.6	48
36	Nucleoporin Translocated Promoter Region (Tpr) Associates with Dynein Complex, Preventing Chromosome Lagging Formation during Mitosis. Journal of Biological Chemistry, 2010, 285, 10841-10849.	3.4	75

RICHARD W WONG

#	Article	IF	CITATIONS
37	Interaction between Rae1 and Cohesin subunit SMC1 is required for proper spindle formation. Cell Cycle, 2010, 9, 198-200.	2.6	39
38	An update on cohesin function as a â€~molecular glue' on chromosomes and spindles. Cell Cycle, 2010, 9, 1754-1758.	2.6	34
39	Characterization of the role of the tumor marker Nup88 in mitosis. Molecular Cancer, 2010, 9, 119.	19.2	41
40	Cohesin subunit SMC1 associates with mitotic microtubules at the spindle pole. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15441-15445.	7.1	75
41	NMDA receptors expressed in oligodendrocytes. BioEssays, 2006, 28, 460-464.	2.5	26
42	Rae1 interaction with NuMA is required for bipolar spindle formation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19783-19787.	7.1	100
43	Anti-cancer activity of an ethanolic extract of red okra pods (Abelmoschus esculentus L. Moench) in rats induced by N-methyl-N-nitrosourea. Veterinary World, 0, , 1177-1184.	1.7	2