
MarÃ-a B Pérez-Gago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3416120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Starchâ€based antifungal edible coatings to control sour rot caused by <i>Geotrichum citriâ€aurantii</i> and maintain postharvest quality of â€̃Fino' lemon. Journal of the Science of Food and Agriculture, 2022, 102, 794-800.	1.7	10
2	Natural Pectin-Based Edible Composite Coatings with Antifungal Properties to Control Green Mold and Reduce Losses of †Valencia' Oranges. Foods, 2022, 11, 1083.	1.9	14
3	Antifungal Hydroxypropyl Methylcellulose (HPMC)-Lipid Composite Edible Coatings and Modified Atmosphere Packaging (MAP) to Reduce Postharvest Decay and Improve Storability of â€ Mollar De Elche' Pomegranates. Coatings, 2021, 11, 308.	1.2	11
4	Hydroxypropyl Methylcellulose-Based Edible Coatings Formulated with Antifungal Food Additives to Reduce Alternaria Black Spot and Maintain Postharvest Quality of Cold-Stored â€~Rojo Brillante' Persimmons. Agronomy, 2021, 11, 757.	1.3	8
5	Postharvest Treatments with Sulfur-Containing Food Additives to Control Major Fungal Pathogens of Stone Fruits. Foods, 2021, 10, 2115.	1.9	5
6	Starch-glyceryl monostearate edible coatings formulated with sodium benzoate control postharvest citrus diseases caused by Penicillium digitatum and Penicillium italicum. Phytopathologia Mediterranea, 2021, 60, 265-279.	0.6	5
7	Optimization of antifungal edible pregelatinized potato starch-based coating formulations by response surface methodology to extend postharvest life of â€~Orri' mandarins. Scientia Horticulturae, 2021, 288, 110394.	1.7	11
8	GRAS Salts as Alternative Low-Toxicity Chemicals for Postharvest Preservation of Fresh Horticultural Products. Plant Pathology in the 21st Century, 2021, , 163-179.	0.6	2
9	Edible Coatings Formulated with Antifungal GRAS Salts to Control Citrus Anthracnose Caused by Colletotrichum gloeosporioides and Preserve Postharvest Fruit Quality. Coatings, 2020, 10, 730.	1.2	17
10	Effect of antioxidants and pH on browning and firmness of minimally processed eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 79-89.	0.5	8
11	Control of major citrus postharvest diseases by sulfur-containing food additives. International Journal of Food Microbiology, 2020, 330, 108713.	2.1	25
12	Subtropical fruits: Citrus. , 2020, , 411-419.		0
13	Antifungal Starch–Gellan Edible Coatings with Thyme Essential Oil for the Postharvest Preservation of Apple and Persimmon. Coatings, 2019, 9, 333.	1.2	47
14	Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain postharvest quality of citrus fruit. International Journal of Food Microbiology, 2019, 301, 9-18.	2.1	33
15	Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables. Critical Reviews in Food Science and Nutrition, 2018, 58, 662-679.	5.4	80
16	Functional Agâ€Exchanged Zeolites as Biocide Agents. ChemistrySelect, 2018, 3, 4676-4682.	0.7	10
17	Integration of antimicrobial pectinâ€based edible coating and active modified atmosphere packaging to preserve the quality and microbial safety of freshâ€cut persimmon (<i>Diospyros kaki</i> Thunb. cv. Rojo) Tj ETC	2q 1. ₫ 0.78	433124 rgBT
18	Effect of antibrowning dips and controlled atmosphere storage on the physico-chemical, visual and nutritional quality of minimally processed "Rojo Brillante―persimmons. Food Science and Technology International, 2017, 23, 3-16.	1.1	2

#	Article	IF	CITATIONS
19	Ag-zeolites as fungicidal material: Control of citrus green mold caused by Penicillium digitatum. Microporous and Mesoporous Materials, 2017, 254, 69-76.	2.2	23
20	Effect of Hydroxypropyl Methylcellulose-Beeswax Composite Edible Coatings Formulated with or without Antifungal Agents on Physicochemical Properties of Plums during Cold Storage. Journal of Food Quality, 2017, 2017, 1-9.	1.4	28
21	Browning inhibition and microbial control in fresh-cut persimmon (<i>Diospyros kaki</i> â€~Rojo) Tj ETQq1 1 0.7 2016, , 305-310.	784314 rgB 0.1	T /Overlock 0
22	Physicochemical, sensory, and nutritional quality of fresh-cut "Rojo Brillante―persimmon affected by maturity stage and antibrowning agents. Food Science and Technology International, 2016, 22, 574-586.	1.1	5
23	Browning inhibition and microbial control in fresh-cut persimmon (Diospyros kaki Thunb. cv. Rojo) Tj ETQq1 1 0.	784314 rgE	8T/Overlock 64
24	Characterization of fruit traits from â€~Mollar de Elche' pomegranate progenies. Acta Horticulturae, 2015, , 25-30.	0.1	1
25	Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings, 2015, 5, 962-986.	1.2	122
26	Nutrient status and irrigation management affect anthocyanins in â€~Mollar de Elche' pomegranate. Acta Horticulturae, 2015, , 85-92.	0.1	9
27	Effects of High CO ₂ Levels on Fermentation, Peroxidation, and Cellular Water Stress in <i>Fragaria vesca</i> Stored at Low Temperature in Conditions of Unlimited O ₂ . Journal of Agricultural and Food Chemistry, 2015, 63, 761-768.	2.4	16
28	Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Scientia Horticulturae, 2015, 193, 249-257.	1.7	76
29	Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biology and Technology, 2015, 109, 73-81.	2.9	144
30	Effect of maturity stage at processing and antioxidant treatments on the physico-chemical, sensory and nutritional quality of fresh-cut †Rojo Brillante' persimmon. Postharvest Biology and Technology, 2015, 105, 34-44.	2.9	18
31	Novel approaches to control browning of fresh-cut artichoke: Effect of a soy protein-based coating and modified atmosphere packaging. Postharvest Biology and Technology, 2015, 99, 105-113.	2.9	45
32	Edible Coating and Film Materials. , 2014, , 325-350.		29
33	Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose–lipid composite edible coatings for plums. International Journal of Food Microbiology, 2014, 179, 72-79.	2.1	54
34	Application of nondestructive impedance spectroscopy to determination of the effect of temperature on potato microstructure and texture. Journal of Food Engineering, 2014, 133, 16-22.	2.7	51
35	Effect of antifungal hydroxypropyl methylcellulose-beeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biology and Technology, 2014, 92, 1-8.	2.9	110
36	Extending the shelf life of fresh-cut eggplant with a soy protein–cysteine based edible coating and modified atmosphere packaging. Postharvest Biology and Technology, 2014, 95, 81-87.	2.9	74

#	Article	IF	CITATIONS
37	Effect of Antioxidants on Enzymatic Browning of Eggplant Extract and Fresh-Cut Tissue. Journal of Food Processing and Preservation, 2014, 38, 1501-1510.	0.9	14
38	Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. â€~Mollar de Elche' at harvest and during cold storage. Agricultural Water Management, 2013, 125, 61-70.	2.4	76
39	Effect of antioxidants in controlling enzymatic browning of minimally processed persimmon â€~Rojo Brillante'. Postharvest Biology and Technology, 2013, 86, 487-493.	2.9	29
40	Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. International Journal of Food Microbiology, 2013, 166, 391-398.	2.1	53
41	Antibrowning effect of antioxidants on extract, precipitate, and fresh-cut tissue of artichokes. LWT - Food Science and Technology, 2013, 51, 462-468.	2.5	20
42	Effects of chitosan coatings on physicochemical and nutritional quality of clementine mandarins cv. â€~Oronules'. Food Science and Technology International, 2012, 18, 303-315.	1.1	6
43	Effect of solid content and composition of hydroxypropyl methylcellulose–lipid edible coatings on physicoâ€chemical and nutritional quality of †Oronules' mandarins. Journal of the Science of Food and Agriculture, 2012, 92, 794-802.	1.7	25
44	Antimicrobial Edible Films and Coatings for Fresh and Minimally Processed Fruits and Vegetables: A Review. Critical Reviews in Food Science and Nutrition, 2011, 51, 872-900.	5.4	245
45	Effect of beeswax content on hydroxypropyl methylcellulose-based edible film properties and postharvest quality of coated plums (Cv. Angeleno). LWT - Food Science and Technology, 2011, 44, 2328-2334.	2.5	92
46	Performance of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings with antifungal food additives during cold storage of â€~Clemenules' mandarins. LWT - Food Science and Technology, 2011, 44, 2342-2348.	2.5	45
47	Effect of insecticidal atmosphere and low dose Xâ€ray irradiation in combination with cold quarantine storage on bioactive compounds of clementine mandarins cv. †Clemenules'. International Journal of Food Science and Technology, 2011, 46, 612-619.	1.3	9
48	Effect of solid content and composition of hydroxypropyl methylcellulose-lipid edible coatings on physicochemical, sensory and nutritional quality of †Valencia' oranges. International Journal of Food Science and Technology, 2011, 46, 2437-2445.	1.3	18
49	Effect of Antifungal Hydroxypropyl Methylcelluloseâ€Lipid Edible Composite Coatings on Penicillium Decay Development and Postharvest Quality of Coldâ€Stored "Ortanique―Mandarins. Journal of Food Science, 2010, 75, S418-26.	1.5	42
50	Effect of Insecticidal Atmospheres at High Temperature Combined with Short Cold-quarantine Treatment on Quality of †Valencia' Oranges. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1496-1500.	0.5	3
51	Development and optimization of locust bean gum (LBG)-based edible coatings for postharvest storage of â€~Fortune' mandarins. Postharvest Biology and Technology, 2009, 52, 227-234.	2.9	58
52	Effect of antifungal hydroxypropyl methylcellulose (HPMC)–lipid edible composite coatings on postharvest decay development and quality attributes of cold-stored â€~Valencia' oranges. Postharvest Biology and Technology, 2009, 54, 72-79.	2.9	81
53	Curative and Preventive Activity of Hydroxypropyl Methylcellulose-Lipid Edible Composite Coatings Containing Antifungal Food Additives to Control Citrus Postharvest Green and Blue Molds. Journal of Agricultural and Food Chemistry, 2009, 57, 2770-2777.	2.4	64
54	Fatty Acid Effect on Hydroxypropyl Methylcelluloseâ^'Beeswax Edible Film Properties and Postharvest Quality of Coated â€~Ortanique' Mandarins. Journal of Agricultural and Food Chemistry, 2008, 56, 10689-10696.	2.4	56

MarÃa B Pérez-Gago

#	Article	IF	CITATIONS
55	Inhibition of Penicillium digitatum and Penicillium italicum by Hydroxypropyl Methylcelluloseâ^'Lipid Edible Composite Films Containing Food Additives with Antifungal Properties. Journal of Agricultural and Food Chemistry, 2008, 56, 11270-11278.	2.4	68
56	Effect of Plasticizer Type and Amount on Hydroxypropyl Methylcelluloseâ^'Beeswax Edible Film Properties and Postharvest Quality of Coated Plums (Cv. Angeleno). Journal of Agricultural and Food Chemistry, 2008, 56, 9502-9509.	2.4	78
57	Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biology and Technology, 2006, 39, 84-92.	2.9	205
58	Effect of whey protein- and hydroxypropyl methylcellulose-based edible composite coatings on color change of fresh-cut apples. Postharvest Biology and Technology, 2005, 36, 77-85.	2.9	109
59	Postharvest Quality of Coated Cherries cv. â€~Burlat' as Affected by Coating Composition and Solids Content. Food Science and Technology International, 2005, 11, 417-424.	1.1	21
60	Emulsion and bi-layer edible films. , 2005, , 384-402.		33
61	Effect of Solid Content and Lipid Content of Whey Protein Isolate-Beeswax Edible Coatings on Color Change of Fresh-cut Apples. Journal of Food Science, 2003, 68, 2186-2191.	1.5	61
62	Effect of Hydroxypropyl Methylcellulose-Lipid Edible Composite Coatings on Plum (cv. Autumn giant) Quality During Storage. Journal of Food Science, 2003, 68, 879-883.	1.5	51
63	Effect of Lipid Type and Amount of Edible Hydroxypropyl Methylcellulose-lipid Composite Coatings Used to Protect Postharvest Quality of Mandarins cv. Fortune. Journal of Food Science, 2002, 67, 2903-2910.	1.5	87
64	Lipid Particle Size Effect on Water Vapor Permeability and Mechanical Properties of Whey Protein/Beeswax Emulsion Films. Journal of Agricultural and Food Chemistry, 2001, 49, 996-1002.	2.4	225
65	Denaturation Time and Temperature Effects on Solubility, Tensile Properties, and Oxygen Permeability of Whey Protein Edible Films. Journal of Food Science, 2001, 66, 705-710.	1.5	177
66	Drying Temperature Effect on Water Vapor Permeability and Mechanical Properties of Whey Proteinâ^'Lipid Emulsion Films. Journal of Agricultural and Food Chemistry, 2000, 48, 2687-2692.	2.4	86
67	Water Vapor Permeability, Solubility, and Tensile Properties of Heat-denatured versus Native Whey Protein Films. Journal of Food Science, 1999, 64, 1034-1037.	1.5	206
68	Water Vapor Permeability of Whey Protein Emulsion Films as Affected by pH. Journal of Food Science, 1999, 64, 695-698.	1.5	82
69	Effect of Temperature on Isobutyric Acid Loss during Roasting of Carob Kibble. Journal of Agricultural and Food Chemistry, 1997, 45, 4084-4087.	2.4	14