Ali El-Naggar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/341610/publications.pdf

Version: 2024-02-01

318942 536525 2,924 32 23 29 h-index citations g-index papers 32 32 32 2795 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antimony contamination and its risk management in complex environmental settings: A review. Environment International, 2022, 158, 106908.	4.8	125
2	Enhanced sorption of trivalent antimony by chitosan-loaded biochar in aqueous solutions: Characterization, performance and mechanisms. Journal of Hazardous Materials, 2022, 425, 127971.	6.5	89
3	Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. Bioresource Technology, 2022, 346, 126581.	4.8	60
4	Ecotoxicological assessment of toxic elements contamination in mangrove ecosystem along the Red Sea coast, Egypt. Marine Pollution Bulletin, 2022, 176, 113446.	2.3	11
5	Thallium isotopic compositions as tracers in environmental studies: A review. Environment International, 2022, 162, 107148.	4.8	15
6	Biochar effectively remediates Cd contamination in acidic or coarse- and medium-textured soils: A global meta-analysis. Chemical Engineering Journal, 2022, 442, 136225.	6.6	25
7	Modified and pristine biochars for remediation of chromium contamination in soil and aquatic systems. Chemosphere, 2022, 303, 134942.	4.2	26
8	Biochar for remediation of alkaline soils contaminated with toxic elements., 2022,, 223-240.		0
9	Converting rice husk to biochar reduces bamboo soil N2O emissions under different forms and rates of nitrogen additions. Environmental Science and Pollution Research, 2021, 28, 28777-28788.	2.7	8
10	Biochar Surface Functionality Plays a Vital Role in (Im)Mobilization and Phytoavailability of Soil Vanadium. ACS Sustainable Chemistry and Engineering, 2021, 9, 6864-6874.	3.2	35
11	Phosphate-lanthanum coated sewage sludge biochar improved the soil properties and growth of ryegrass in an alkaline soil. Ecotoxicology and Environmental Safety, 2021, 216, 112173.	2.9	21
12	Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environment International, 2021, 153, 106527.	4.8	61
13	A combined management scheme to simultaneously mitigate As and Cd concentrations in rice cultivated in contaminated paddy soil. Journal of Hazardous Materials, 2021, 416, 125837.	6.5	35
14	Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. Journal of Hazardous Materials, 2021, 419, 126421.	6.5	65
15	(Im)mobilization of arsenic, chromium, and nickel in soils via biochar: A meta-analysis. Environmental Pollution, 2021, 286, 117199.	3.7	40
16	Mechanistic insights into the (im)mobilization of arsenic, cadmium, lead, and zinc in a multi-contaminated soil treated with different biochars. Environment International, 2021, 156, 106638.	4.8	61
17	Evaluation of potential ecological risks in potential toxic elements contaminated agricultural soils: Correlations between soil contamination and polymetallic mining activity. Journal of Environmental Management, 2021, 300, 113679.	3.8	28
18	Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. Science of the Total Environment, 2020, 698, 134112.	3.9	139

#	Article	IF	CITATIONS
19	Release of toxic elements in fishpond sediments under dynamic redox conditions: Assessing the potential environmental risk for a safe management of fisheries systems and degraded waterlogged sediments. Journal of Environmental Management, 2020, 255, 109778.	3.8	29
20	Redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil. Environment International, 2020, 140, 105754.	4.8	104
21	Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environment International, 2020, 138, 105646.	4.8	238
22	Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. Journal of Environmental Management, 2019, 241, 458-467.	3.8	249
23	Management of biosolids-derived hydrochar (Sewchar): Effect on plant germination, and farmers' acceptance. Journal of Environmental Management, 2019, 237, 200-214.	3.8	48
24	Dissolved organic matter characterization of biochars produced from different feedstock materials. Journal of Environmental Management, 2019, 233, 393-399.	3.8	104
25	Release dynamics of As, Co, and Mo in a biochar treated soil under pre-definite redox conditions. Science of the Total Environment, 2019, 657, 686-695.	3.9	69
26	Effect of gasification biochar application on soil quality: Trace metal behavior, microbial community, and soil dissolved organic matter. Journal of Hazardous Materials, 2019, 365, 684-694.	6.5	156
27	Biochar as an (Im)mobilizing Agent for the Potentially Toxic Elements in Contaminated Soils. , 2019, , 255-274.		13
28	Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 2019, 337, 536-554.	2.3	571
29	Biochar influences soil carbon pools and facilitates interactions with soil: A field investigation. Land Degradation and Development, 2018, 29, 2162-2171.	1.8	89
30	Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions. Science of the Total Environment, 2018, 624, 1059-1071.	3.9	201
31	Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma, 2018, 332, 100-108.	2.3	206
32	Potential of Biochar to Immobilize Nickel in Contaminated Soils., 2018,, 293-318.		3