
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3416014/publications.pdf Version: 2024-02-01

IOHN A M RAMSHAW

#	Article	IF	CITATIONS
1	Porous carbon sponges from collagen-rich biomass waste for high-performance supercapacitors. Materials Today Sustainability, 2022, 18, 100152.	1.9	8
2	Variation in Hydrogel Formation and Network Structure for Telo-, Atelo- and Methacrylated Collagens. Polymers, 2022, 14, 1775.	2.0	6
3	Suitability of Marine- and Porcine-Derived Collagen Type I Hydrogels for Bioprinting and Tissue Engineering Scaffolds. Marine Drugs, 2022, 20, 366.	2.2	12
4	Shaping collagen for engineering hard tissues: Towards a printomics approach. Acta Biomaterialia, 2021, 131, 41-61.	4.1	27
5	Recent progress with recombinant collagens produced in Escherichia coli. Current Opinion in Biomedical Engineering, 2019, 10, 149-155.	1.8	16
6	Aberrant activation of Wnt signaling pathway altered osteocyte mineralization. Bone, 2019, 127, 324-333.	1.4	20
7	Porous carbon fibers made from collagen derived from an animal by-product. Materials Today Advances, 2019, 1, 100005.	2.5	10
8	FIB/SEM Processing of Biological Samples. Microscopy and Microanalysis, 2018, 24, 822-823.	0.2	3
9	Incorporation of hydroxyproline in bacterial collagen from Streptococcus pyogenes. Acta Biomaterialia, 2018, 80, 169-175.	4.1	11
10	Bioengineered Collagens. Sub-Cellular Biochemistry, 2017, 82, 601-629.	1.0	24
11	Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels. Acta Biomaterialia, 2017, 51, 75-88.	4.1	49
12	Native thymic extracellular matrix improves inÂvivo thymic organoid T cell output, and drives inÂvitro thymic epithelial cell differentiation. Biomaterials, 2017, 118, 1-15.	5.7	51
13	Engineering specific chemical modification sites into a collagenâ€like protein from <i>Streptococcus pyogenes</i> . Journal of Biomedical Materials Research - Part A, 2017, 105, 806-813.	2.1	7
14	Stabilisation of Collagen Sponges by Glutaraldehyde Vapour Crosslinking. International Journal of Biomaterials, 2017, 2017, 1-6.	1.1	31
15	Formation of multimers of bacterial collagens through introduction of specific sites for oxidative crosslinking. Journal of Biomedical Materials Research - Part A, 2016, 104, 2369-2376.	2.1	6
16	Temporally degradable collagen–mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells. Biomaterials, 2016, 99, 56-71.	5.7	56
17	Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds. Advanced Healthcare Materials, 2016, 5, 1656-1666.	3.9	21
18	Biomedical applications of collagens. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 665-675.	1.6	52

#	Article	IF	CITATIONS
19	An Adhesive Secreted by Australian Frogs of the Genus Notaden. , 2016, , 223-243.		4
20	Non–animal collagens as new options for cosmetic formulation. International Journal of Cosmetic Science, 2015, 37, 636-641.	1.2	9
21	Temporal changes in the biomechanical properties of endometrial mesenchymal stem cell seeded scaffolds in a rat model. Acta Biomaterialia, 2015, 13, 286-294.	4.1	33
22	Evaluation of polyvinyl alcohol composite membranes containing collagen and bone particles. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 48, 38-45.	1.5	21
23	Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials, 2015, 54, 213-225.	5.7	139
24	Evaluation of an established pericardium patch for delivery of mesenchymal stem cells to cardiac tissue. Journal of Biomedical Materials Research - Part A, 2015, 103, 1999-2005.	2.1	23
25	Human Endometrial Mesenchymal Stem Cells Modulate the Tissue Response and Mechanical Behavior of Polyamide Mesh Implants for Pelvic Organ Prolapse Repair. Tissue Engineering - Part A, 2014, 20, 131121072458005.	1.6	73
26	Identification of Proteins Associated with Adhesive Prints from Holothuria dofleinii Cuvierian Tubules. Marine Biotechnology, 2014, 16, 695-706.	1.1	9
27	Bioengineered collagens. Bioengineered, 2014, 5, 227-233.	1.4	33
28	Preparation and characterization of monomers to tetramers of a collagen-like domain fromStreptococcus pyogenes. Bioengineered, 2014, 5, 378-385.	1.4	13
29	Temporal variation in the deposition of different types of collagen within a porous biomaterial implant. Journal of Biomedical Materials Research - Part A, 2014, 102, 3550-3555.	2.1	4
30	Engineering multiple biological functional motifs into a blank collagenâ€like protein template from <i>Streptococcus pyogenes</i> . Journal of Biomedical Materials Research - Part A, 2014, 102, 2189-2196.	2.1	40
31	A simple cost-effective methodology for large-scale purification of recombinant non-animal collagens. Applied Microbiology and Biotechnology, 2014, 98, 1807-1815.	1.7	38
32	Induction of endometrial mesenchymal stem cells into tissue-forming cells suitable for fascial repair. Acta Biomaterialia, 2014, 10, 5012-5020.	4.1	59
33	Bacterial collagen-like proteins that form triple-helical structures. Journal of Structural Biology, 2014, 186, 451-461.	1.3	117
34	Influence of Reproductive Status on Tissue Composition and Biomechanical Properties of Ovine Vagina. PLoS ONE, 2014, 9, e93172.	1.1	38
35	Characterisation of clinical and newly fabricated meshes for pelvic organ prolapse repair. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 23, 53-61.	1.5	48
36	The adhesive skin exudate of Notaden bennetti frogs (Anura: Limnodynastidae) has similarities to the prey capture glue of Euperipatoides sp. velvet worms (Onychophora: Peripatopsidae). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2013, 165, 250-259.	0.7	28

#	Article	IF	CITATIONS
37	A new class of animal collagen masquerading as an insect silk. Scientific Reports, 2013, 3, 2864.	1.6	25
38	Controlled surface modification of tissue culture polystyrene for selective cell binding using resilin-inspired polypeptides. Biofabrication, 2013, 5, 035005.	3.7	19
39	Recombinant protein scaffolds for tissue engineering. Biomedical Materials (Bristol), 2012, 7, 012002.	1.7	98
40	Towards scalable production of a collagen-like protein from Streptococcus pyogenes for biomedical applications. Microbial Cell Factories, 2012, 11, 146.	1.9	60
41	Collagen-based layer-by-layer coating on electrospun polymer scaffolds. Biomaterials, 2012, 33, 9198-9204.	5.7	59
42	A Preclinical Evaluation of Alternative Synthetic Biomaterials for Fascial Defect Repair Using a Rat Abdominal Hernia Model. PLoS ONE, 2012, 7, e50044.	1.1	53
43	Stabilization of collagen tissues by photocrosslinking. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2239-2243.	2.1	12
44	Purification of recombinant protein by coldâ€coacervation of fusion constructs incorporating resilinâ€inspired polypeptides. Biotechnology and Bioengineering, 2012, 109, 2947-2954.	1.7	31
45	A Highly Elastic and Adhesive Gelatin Tissue Sealant for Gastrointestinal Surgery and Colon Anastomosis. Journal of Gastrointestinal Surgery, 2012, 16, 744-752.	0.9	38
46	Controlling the Molecular Structure and Physical Properties of Artificial Honeybee Silk by Heating or by Immersion in Solvents. PLoS ONE, 2012, 7, e52308.	1.1	27
47	Impact of Heparan Sulfate Chains and Sulfur-Mediated Bonds on the Mechanical Properties of Bovine Lens Capsule. Biophysical Journal, 2011, 100, 2077-2083.	0.2	6
48	Photochemically crosslinked matrices of gelatin and fibrinogen promote rapid cell proliferation. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 337-346.	1.3	23
49	Modeling Tissue Growth Within Nonwoven Scaffolds Pores. Tissue Engineering - Part C: Methods, 2011, 17, 123-130.	1.1	25
50	Preparation of resorbable collagenâ€based beads for direct use in tissue engineering and cell therapy applications. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1301-1309.	2.1	12
51	Biocompatibility and modification of the proteinâ€based adhesive secreted by the Australian frog <i>Notaden bennetti</i> . Journal of Biomedical Materials Research - Part A, 2010, 93A, 429-441.	2.1	11
52	Evaluation of photo rosslinked fibrinogen as a rapid and strong tissue adhesive. Journal of Biomedical Materials Research - Part A, 2010, 93A, 687-695.	2.1	33
53	Evaluation of the immunogenicity and cell compatibility of avian collagen for biomedical applications. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1235-1244.	2.1	30
54	A comparison of the effects of fibre alignment of smooth and textured fibres in electrospun membranes on fibroblast cell adhesion. Biomedical Materials (Bristol), 2010, 5, 025005.	1.7	20

#	Article	IF	CITATIONS
55	Evaluation of in situ curable biodegradable polyurethanes containing zwitterion components. Journal of Materials Science: Materials in Medicine, 2010, 21, 1081-1089.	1.7	13
56	Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2010, 95A, 901-911.	2.1	70
57	A highly elastic tissue sealant based on photopolymerised gelatin. Biomaterials, 2010, 31, 8323-8331.	5.7	162
58	Biodegradable and injectable cure-on-demand polyurethane scaffolds for regeneration of articular cartilage. Acta Biomaterialia, 2010, 6, 3471-3481.	4.1	41
59	A Streptococcus pyogenes derived collagen-like protein as a non-cytotoxic and non-immunogenic cross-linkable biomaterial. Biomaterials, 2010, 31, 2755-2761.	5.7	76
60	The effect of bovine endosteum-derived particles on the proliferation of human mesenchymal stem cells. Biomaterials, 2010, 31, 5689-5699.	5.7	10
61	Heart valve collagens: cross-species comparison using immunohistological methods. Journal of Heart Valve Disease, 2010, 19, 766-71.	0.5	6
62	Screening Microalgal Cultures in Search of Microbial Exopolysaccharides with Potential as Adhesives. Journal of Adhesion, 2009, 85, 97-125.	1.8	18
63	Constructs for the expression of repeating triple-helical protein domains. Biomedical Materials (Bristol), 2009, 4, 015006.	1.7	6
64	The development of photochemically crosslinked native fibrinogen as a rapidly formed and mechanically strong surgical tissue sealant. Biomaterials, 2009, 30, 2059-2065.	5.7	113
65	Collagens as biomaterials. Journal of Materials Science: Materials in Medicine, 2009, 20, 3-8.	1.7	108
66	Selfâ€association of <i>streptococcus pyogenes</i> collagenâ€like constructs into higher order structures. Protein Science, 2009, 18, 1241-1251.	3.1	75
67	Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering. Biomaterials, 2009, 30, 1725-1731.	5.7	107
68	Carbon nanotubes in scaffolds for tissue engineering. Expert Review of Medical Devices, 2009, 6, 499-505.	1.4	91
69	Constructs for the expression of repeating triple-helical protein domains. Biomedical Materials (Bristol), 2009, 4, 015006.	1.7	2
70	Use of biodegradable urethane-based adhesives to appose meniscal defect edges in an ovine model: a preliminary study. Australian Veterinary Journal, 2008, 86, 229-234.	0.5	8
71	Development of porous collagen beads for chondrocyte culture. Cytotechnology, 2007, 52, 99-106.	0.7	25
72	Examination of basement membrane components associated with the bovine seminiferous tubule basal lamina. Reproduction, Fertility and Development, 2007, 19, 473.	0.1	6

#	Article	IF	CITATIONS
73	Synthetic biodegradable microparticles for articular cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2006, 77A, 590-598.	2.1	45
74	MR Three-Dimensional Molecular Imaging of Intramural Biomarkers with Targeted Nanoparticles. Journal of Cardiovascular Magnetic Resonance, 2006, 8, 535-541.	1.6	34
75	An Adhesive Secreted by Australian Frogs of the Genus Notaden. , 2006, , 207-223.		18
76	Repair of porcine articular cartilage defect with autologous chondrocyte transplantation. Journal of Orthopaedic Research, 2005, 23, 584-593.	1.2	66
77	Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle–urothelial cell interactions. Biomaterials, 2005, 26, 529-543.	5.7	65
78	Prediction of Collagen Stability from Amino Acid Sequence. Journal of Biological Chemistry, 2005, 280, 19343-19349.	1.6	298
79	Electrostatic Interactions Involving Lysine Make Major Contributions to Collagen Triple-Helix Stability. Biochemistry, 2005, 44, 1414-1422.	1.2	166
80	Effect of Deamidation on Stability for the Collagen to Gelatin Transition. Journal of Agricultural and Food Chemistry, 2005, 53, 7802-7806.	2.4	19
81	Characterization of a Protein-based Adhesive Elastomer Secreted by the Australian FrogNotadenbennetti. Biomacromolecules, 2005, 6, 3300-3312.	2.6	70
82	Collagen-hydroxyapatite composite prepared by biomimetic process. Journal of Biomedical Materials Research Part B, 2004, 68A, 19-27.	3.0	163
83	Stepwise construction of triple-helical heparin binding sites using peptide models. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1698, 187-195.	1.1	10
84	Polarization effects in SHG of collagen. , 2004, 5323, 343.		4
85	Evaluation for collagen products for cosmetic application. Journal of Cosmetic Science, 2004, 55, 327-41.	0.1	18
86	Triple-Helix Propensity of Hydroxyproline and Fluoroproline:Â Comparison of Hostâ^'Guest and Repeating Tripeptide Collagen Models. Journal of the American Chemical Society, 2003, 125, 11500-11501.	6.6	91
87	Fluorescence Determination of Tryptophan Side-Chain Accessibility and Dynamics in Triple-Helical Collagen-Like Peptides. Biophysical Journal, 2003, 84, 501-508.	0.2	14
88	Recombinant Protein Scaffolds for Tissue Engineering. , 2003, , .		0
89	Peptide investigations of pairwise interactions in the collagen triple-helix. Journal of Molecular Biology, 2002, 316, 385-394.	2.0	108
90	Collagen Fibril Formation in a Wound Healing Model. Journal of Structural Biology, 2002, 137, 23-30.	1.3	32

#	Article	IF	CITATIONS
91	Collagenous tissue formation in association with medical implants. Current Opinion in Solid State and Materials Science, 2001, 5, 185-191.	5.6	14
92	APPLICATIONS OF COLLAGEN IN MEDICAL DEVICES. Biomedical Engineering - Applications, Basis and Communications, 2001, 13, 14-26.	0.3	10
93	Collagen model peptides: Sequence dependence of triple-helix stability. Biopolymers, 2000, 55, 436-450.	1.2	106
94	Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4273-4278.	3.3	165
95	Amino Acid Propensities for the Collagen Triple-Helix. Biochemistry, 2000, 39, 14960-14967.	1.2	347
96	Sequence Dependence of the Folding of Collagen-like Peptides. Journal of Biological Chemistry, 1999, 274, 7668-7673.	1.6	71
97	Effects of mesh modification on the structure of a mandrel-grown biosynthetic vascular prosthesis. , 1999, 47, 309-315.		9
98	In vivo evaluation of modified mandrel-grown vascular prostheses. , 1999, 47, 316-323.		8
99	Structural consequences of D-amino acids in collagen triple-helical peptides. , 1999, 49, 297-302.		29
100	Evaluation of a collagen-based biosynthetic material for the repair of abdominal wall defects. , 1998, 39, 429-436.		27
101	Gly-X-Y Tripeptide Frequencies in Collagen: A Context for Host–Guest Triple-Helical Peptides. Journal of Structural Biology, 1998, 122, 86-91.	1.3	336
102	Production of Recombinant Hydroxylated Human Type III Collagen Fragment in <i>Saccharomyces cerevisiae</i> . DNA and Cell Biology, 1998, 17, 511-518.	0.9	48
103	Positional Preferences of Ionizable Residues in Gly-X-YTriplets of the Collagen Triple-helix. Journal of Biological Chemistry, 1997, 272, 31441-31446.	1.6	76
104	Gly-Pro-Arg Confers Stability Similar to Gly-Pro-Hyp in the Collagen Triple-helix of Host-Guest Peptides. Journal of Biological Chemistry, 1997, 272, 28837-28840.	1.6	92
105	Identification of the epitope for a monoclonal antibody that blocks platelet aggregation induced by type III collagen. Biochemical Journal, 1997, 323, 45-49.	1.7	18
106	Organization of Fibrillar Collagen in the Human and Bovine Cornea. Connective Tissue Research, 1997, 36, 165-174.	1.1	28
107	Gly-Gly-Containing Triplets of Low Stability Adjacent to a Type III Collagen Epitopeâ€. Biochemistry, 1997, 36, 5878-5883.	1.2	50
108	The collagen triple-helix structure. Matrix Biology, 1997, 15, 545-554.	1.5	431

#	Article	IF	CITATIONS
109	In vivo evaluation of a collagenous membrane as an absorbable adhesion barrier. , 1997, 34, 291-297.		30
110	A Hostâ^'Guest Set of Triple-Helical Peptides:Â Stability of Gly-X-Y Triplets Containing Common Nonpolar Residuesâ€. Biochemistry, 1996, 35, 10262-10268.	1.2	111
111	Collagen-based Biomaterials. Biotechnology and Genetic Engineering Reviews, 1996, 13, 335-382.	2.4	139
112	Stratigraphic evaluation of the collagen surrounding a biomaterial implant. Clinical Materials, 1994, 16, 9-13.	0.5	4
113	Methylene blue sensitized photo-oxidation of collagen fibrils. BBA - Proteins and Proteomics, 1994, 1206, 225-230.	2.1	26
114	Collagen organization in an oriented fibrous capsule. International Journal of Biological Macromolecules, 1994, 16, 27-30.	3.6	18
115	Electrostatic Interactions in Collagen-like Triple-Helical Peptides. Biochemistry, 1994, 33, 7948-7956.	1.2	181
116	Structural analysis of a collagen-polyester composite vascular prosthesis. Clinical Materials, 1993, 14, 271-276.	0.5	13
117	Monoclonal antibodies to type VI collagen demonstrate new tissue augmentation of a collagen-based biomaterial implant Journal of Histochemistry and Cytochemistry, 1993, 41, 1701-1706.	1.3	20
118	Editorial: Collagen-based biomaterials. Clinical Materials, 1992, 9, 137-138.	0.5	10
119	Osteogenic capacity of collagen in repair of established periodontal defects. Clinical Materials, 1992, 9, 201-209.	0.5	9
120	The effect of dissociation of Bacteroides nososus pili on their efficacy as a protective antigen against ovine footrot. Veterinary Microbiology, 1991, 27, 283-293.	0.8	6
121	Conformational epitopes on interstitial collagens. International Journal of Biological Macromolecules, 1991, 13, 140-146.	3.6	8
122	Heterogeneity in dermatosparaxis is shown by contraction of collagen gels. Connective Tissue Research, 1991, 25, 295-300.	1.1	3
123	Monoclonal antibodies to type V collagen for immunohistological examination of new tissue deposition associated with biomaterial implants Journal of Histochemistry and Cytochemistry, 1991, 39, 1215-1220.	1.3	19
124	Characterisation of a monoclonal antibody against native human type I collagen. FEBS Journal, 1990, 187, 439-443.	0.2	44
125	The use of quenching agents to enable immunofluorescent examination of collagen-based biomaterials showing glutaraldehyde-derived autofluorescence. Clinical Materials, 1990, 6, 13-20.	0.5	5
126	Collagen organization in mandrel-grown vascular grafts. Journal of Biomedical Materials Research Part B, 1989, 23, 649-660.	3.0	26

#	Article	IF	CITATIONS
127	Development of monoclonal antibodies to collagens for assesing host?implant interactions. Journal of Biomedical Materials Research Part B, 1989, 23, 273-283.	3.0	21
128	Electrophoresis and electroblotting of native collagens. Analytical Biochemistry, 1988, 168, 82-87.	1.1	22
129	Characterization of type I collagen from the skin of blue grenadier (Macruronus novaezelandiae). Archives of Biochemistry and Biophysics, 1988, 267, 497-502.	1.4	24
130	Distribution of Type lii Collagen in Bovine Skin of Various Ages. Connective Tissue Research, 1986, 14, 307-314.	1.1	50
131	Changes in the Physical and Chemical Properties of Skin Collagen from Broiler Chickens Exhibiting Oily Bird Syndrome. Poultry Science, 1986, 65, 43-50.	1.5	17
132	A Morphologic Study of a Mild Form of Ovine Dermatosparaxis. Journal of Investigative Dermatology, 1985, 84, 391-395.	0.3	13
133	Structural analysis of glycerol-3-phosphate dehydrogenase from severalDrosophila species. Biochemical Genetics, 1985, 23, 801-814.	0.8	5
134	A Mild Form of Ovine Dermatosparaxis. Collagen and Related Research, 1984, 4, 441-451.	2.2	9
135	Precipitation of collagens by polyethylene glycols. Analytical Biochemistry, 1984, 141, 361-365.	1.1	26
136	Ovine dermatosparaxis. Australian Veterinary Journal, 1983, 60, 149-151.	0.5	8
137	The amino acid sequence of plastocyanin from Cucumis sativus. Phytochemistry, 1982, 21, 1317-1320.	1.4	10
138	Serial electrophoretic transfers: A technique for the identification of numerous enzymes from single polyacrylamide gels. Biochemical Genetics, 1981, 19, 647-654.	0.8	58
139	Electrophoretic Heterogeneity of α-Glycerophosphate Dehydrogenase among many Species of Drosophila. Systematic Zoology, 1979, 28, 164.	1.6	53
140	THE SENSITIVITY OF GEL ELECTROPHORESIS AS A DETECTOR OF GENETIC VARIATION. Genetics, 1979, 93, 1019-1037.	1.2	151
141	The amino acid sequences of plastocyanin from Mercurialis perennis and Capsella bursa-pastoris. Phytochemistry, 1978, 17, 901-905.	1.4	4
142	The amino acid sequence of plastocyanin from Rumex obtusifolius. Phytochemistry, 1978, 17, 615-617.	1.4	4
143	X-ray crystal structure analysis of plastocyanin at 2.7 Ã resolution. Nature, 1978, 272, 319-324.	13.7	769
144	Study of the charge-state model for electrophoretic variation using isoelectric focusing of esterase-5 from Drosophila pseudoobscura. Nature, 1978, 275, 68-70.	13.7	20

3

#	Article	IF	CITATIONS
145	High resolution proton magnetic resonance studies of plastocyanin. FEBS Letters, 1978, 86, 131-135.	1.3	24
146	Preliminary crystallographic data for a copper-containing protein, plastocyanin. Journal of Molecular Biology, 1977, 110, 187-189.	2.0	23
147	Preliminary crystallographic data for a basic copper-containing protein from cucumber seedlings. Journal of Molecular Biology, 1977, 112, 649-650.	2.0	30
148	The amino acid sequence of plastocyanin from Lactuca sativa (lettuce). Phytochemistry, 1976, 15, 1199-1202.	1.4	8
149	The amino acid sequence of cytochrome c from niger-seed, Guizotia abyssinica. Phytochemistry, 1975, 14, 1945-1949.	1.4	12
150	Cytochrome cs from Rhodymenia palmata and Porphyra umbilicalis and the amino acid sequences of their N-terminal regions. Phytochemistry, 1975, 14, 1493-1497.	1.4	10
151	Purification and properties of an acid protease from Phaseolus aureus. Phytochemistry, 1975, 14, 1283-1284.	1.4	5
152	The Amino-Acid Sequence of Plastocyanin from Sambucus nigra L. (Elder). FEBS Journal, 1974, 44, 299-303.	0.2	20
153	Phylogenetic implications of the amino acid sequence of cytochrome c from Enteromorpha intestinalis. Phytochemistry, 1974, 13, 2783-2789.	1.4	10
154	The amino acid sequence of plastocyanin from Solanum tuberosum L. (potato). Biochemical Journal, 1974, 139, 583-592.	1.7	36
155	The amino acid sequence of plastocyanin from <i>Vicia faba</i> L. (broad bean). Biochemical Journal, 1974, 141, 835-843.	1.7	29
156	THE TIME OF ORIGIN OF THE FLOWERING PLANTS DETERMINED BY USING AMINO ACID SEQUENCE DATA OF CYTOCHROME C. New Phytologist, 1972, 71, 773-779.	3.5	60
157	Structure-function relationships in plant cytochrome c. Phytochemistry, 1972, 11, 553-561.	1.4	13
158	An Improved Method for the Purification of Cyutochrome c from Higher Plants. Journal of Biochemistry, 1971, 69, 811-813.	0.9	25
159	The Amino-Acid Sequence of the Cytochrome c of Gikgo biloba L FEBS Journal, 1971, 23, 475-483.	0.2	32
160	Higher Plant Cytochrome c. Nature, 1970, 228, 552-554.	13.7	30
161	Isolation and purification of cytochrome c from some species of higher plants. Phytochemistry, 1970, 9, 2271-2280.	1.4	22

162 Collagen-Based Vascular Prostheses. , 0, , 121-136.