
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3416013/publications.pdf Version: 2024-02-01



MARKERICCS

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nature<br>Materials, 2017, 16, 1225-1232.                                                                       | 13.3 | 219       |
| 2  | The effects of activated carbon surface features on the reactive adsorption of carbamazepine and sulfamethoxazole. Carbon, 2014, 80, 419-432.                                                             | 5.4  | 154       |
| 3  | Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway. Carbon, 2015, 85, 147-158.                          | 5.4  | 145       |
| 4  | Molecular-Level Understanding of Protein Adsorption at the Interface between Water and a Strongly<br>Interacting Uncharged Solid Surface. Journal of the American Chemical Society, 2014, 136, 5323-5331. | 6.6  | 139       |
| 5  | Carbon Nanotubes for Dye-Sensitized Solar Cells. Small, 2015, 11, 2963-2989.                                                                                                                              | 5.2  | 122       |
| 6  | Nanocarbons for mesoscopic perovskite solar cells. Journal of Materials Chemistry A, 2015, 3,<br>9020-9031.                                                                                               | 5.2  | 104       |
| 7  | A Highâ€Volumetricâ€Capacity Cathode Based on Interconnected Closeâ€Packed Nâ€Doped Porous Carbon<br>Nanospheres for Longâ€Life Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1701082.    | 10.2 | 88        |
| 8  | Carbon Nanotubes in TiO <sub>2</sub> Nanofiber Photoelectrodes for Highâ€Performance Perovskite<br>Solar Cells. Advanced Science, 2017, 4, 1600504.                                                       | 5.6  | 83        |
| 9  | Solution processed graphene structures for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 2605-2616.                                                                                  | 5.2  | 73        |
| 10 | Thermodynamic cycles of adsorption desalination system. Applied Energy, 2012, 90, 316-322.                                                                                                                | 5.1  | 71        |
| 11 | Virtual porous carbons: what they are and what they can be used for. Molecular Simulation, 2006, 32, 579-593.                                                                                             | 0.9  | 60        |
| 12 | Carbon microspheres with embedded FeP nanoparticles as a cathode electrocatalyst in Li-S batteries.<br>Chemical Engineering Journal, 2021, 406, 126823.                                                   | 6.6  | 60        |
| 13 | Transformations and destruction of nitrogen oxides—NO, NO2 and N2O—in a pulsed corona<br>discharge reactorâ~†. Fuel, 2003, 82, 1675-1684.                                                                 | 3.4  | 59        |
| 14 | The COCO2 product ratio for a porous char particle within an incipiently fluidized bed: a numerical study. Chemical Engineering Science, 1997, 52, 941-952.                                               | 1.9  | 54        |
| 15 | Free Energy of Adsorption for a Peptide at a Liquid/Solid Interface via Nonequilibrium Molecular<br>Dynamics. Langmuir, 2013, 29, 2919-2926.                                                              | 1.6  | 53        |
| 16 | Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems.<br>Colloids and Surfaces B: Biointerfaces, 2013, 104, 276-281.                                         | 2.5  | 49        |
| 17 | Single-Walled Carbon Nanotubes Enhance the Efficiency and Stability of Mesoscopic Perovskite Solar<br>Cells. ACS Applied Materials & Interfaces, 2017, 9, 19945-19954.                                    | 4.0  | 49        |
| 18 | Pore size distributions derived from adsorption isotherms, immersion calorimetry, and isosteric heats: A comparative study. Carbon, 2016, 96, 1106-1113.                                                  | 5.4  | 47        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Experimental implementation and validation of thermodynamic cycles of adsorption-based desalination. Applied Energy, 2012, 98, 190-197.                                                                                               | 5.1 | 44        |
| 20 | Dynamic model for the optimisation of adsorption-based desalination processes. Applied Thermal Engineering, 2014, 66, 464-473.                                                                                                        | 3.0 | 42        |
| 21 | Thermodynamic analysis of an adsorption-based desalination cycle. Chemical Engineering Research and Design, 2010, 88, 1541-1547.                                                                                                      | 2.7 | 41        |
| 22 | Carbonaceous Dye‧ensitized Solar Cell Photoelectrodes. Advanced Science, 2015, 2, 1400025.                                                                                                                                            | 5.6 | 39        |
| 23 | Incorporation of graphene into SnO2 photoanodes for dye-sensitized solar cells. Applied Surface<br>Science, 2016, 387, 690-697.                                                                                                       | 3.1 | 38        |
| 24 | Effect of visible light and electrode wetting on the capacitive performance of S- and N-doped nanoporous carbons: Importance of surface chemistry. Carbon, 2014, 78, 540-558.                                                         | 5.4 | 37        |
| 25 | A pore network model for diffusion in nanoporous carbons: Validation by molecular dynamics simulation. Chemical Engineering Science, 2008, 63, 3319-3327.                                                                             | 1.9 | 36        |
| 26 | Analysis of Adsorbate–Adsorbate and Adsorbate–Adsorbent Interactions to Decode Isosteric Heats of<br>Gas Adsorption. ChemPhysChem, 2015, 16, 3797-3805.                                                                               | 1.0 | 36        |
| 27 | Explicit numerical simulation of suspension flow with deposition in porous media: influence of local flow field variation on deposition processes predicted by trajectory methods. Chemical Engineering Science, 2003, 58, 1271-1288. | 1.9 | 35        |
| 28 | Molecular Simulation Evidence for Solidlike Adsorbate in Complex Carbonaceous Micropore<br>Structures. Langmuir, 2004, 20, 5786-5800.                                                                                                 | 1.6 | 35        |
| 29 | Evaluation of Methods for Determining the Pore Size Distribution and Pore-Network Connectivity of<br>Porous Carbons. Langmuir, 2007, 23, 8430-8440.                                                                                   | 1.6 | 34        |
| 30 | Experimental study of a liquid fluidization in a microfluidic channel. AICHE Journal, 2013, 59, 361-364.                                                                                                                              | 1.8 | 34        |
| 31 | Thermodynamic analysis of an adsorption-based desalination cycle (part II): Effect of evaporator temperature on performance. Chemical Engineering Research and Design, 2011, 89, 2168-2175.                                           | 2.7 | 31        |
| 32 | Characterizations of Activated Carbon–Methanol Adsorption Pair Including the Heat of Adsorptions.<br>Journal of Chemical & Engineering Data, 2015, 60, 1727-1731.                                                                     | 1.0 | 31        |
| 33 | Granular temperature in a gas fluidized bed. Granular Matter, 2008, 10, 63-73.                                                                                                                                                        | 1.1 | 27        |
| 34 | Cobalt(II) Tetraaminophthalocyanineâ€modified Multiwall Carbon Nanotubes as an Efficient Sulfur<br>Redox Catalyst for Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 3034-3044.                                                     | 3.6 | 27        |
| 35 | Combustion of a porous char particle in an incipiently fluidized bed. Fuel, 1998, 77, 1549-1560.                                                                                                                                      | 3.4 | 26        |
| 36 | Sulfurâ€Doped Graphene with Iron Pyrite (FeS <sub>2</sub> ) as an Efficient and Stable Electrocatalyst<br>for the Iodine Reduction Reaction in Dye‧ensitized Solar Cells. Solar Rrl, 2017, 1, 1700011.                                | 3.1 | 25        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Granular temperature distribution in a gas fluidized bed of hollow microparticles prior to onset of bubbling. Europhysics Letters, 2006, 74, 268-274.                                      | 0.7 | 23        |
| 38 | Absolute Assessment of Adsorption-Based Porous Solid Characterization Methods:Â Comparison<br>Methods. Langmuir, 2004, 20, 7123-7138.                                                      | 1.6 | 22        |
| 39 | Free-standing compact cathodes for high volumetric and gravimetric capacity Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 19924-19933.                                        | 5.2 | 21        |
| 40 | Mass diffusion of atomic fluids in random micropore spaces using equilibrium molecular dynamics.<br>Physical Review A, 1992, 46, 3312-3318.                                                | 1.0 | 20        |
| 41 | Control of the pore size distribution and its spatial homogeneity in particulate activated carbon.<br>Carbon, 2014, 78, 113-120.                                                           | 5.4 | 20        |
| 42 | Explicit numerical simulation of fluids in reconstructed porous media. Chemical Engineering Science, 2002, 57, 1955-1968.                                                                  | 1.9 | 19        |
| 43 | Effect of pore wall model on prediction of diffusion coefficients for graphitic slit pores. Physical<br>Chemistry Chemical Physics, 2008, 10, 2519.                                        | 1.3 | 19        |
| 44 | Particle dynamics in a dense vibrated fluidized bed as revealed by diffusing wave spectroscopy. Powder Technology, 2008, 182, 192-201.                                                     | 2.1 | 18        |
| 45 | Particle dynamics and granular temperatures in dense fluidized beds as revealed by diffusing wave spectroscopy. Advanced Powder Technology, 2009, 20, 227-233.                             | 2.0 | 18        |
| 46 | A multi-method study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the activation pathway. Carbon, 2015, 85, 119-134.                      | 5.4 | 18        |
| 47 | Ab initio protein fold prediction using evolutionary algorithms: Influence of design and control parameters on performance. Journal of Computational Chemistry, 2006, 27, 1177-1195.       | 1.5 | 17        |
| 48 | Immersion Calorimetry: Molecular Packing Effects in Micropores. ChemPhysChem, 2015, 16, 3984-3991.                                                                                         | 1.0 | 14        |
| 49 | Study of Conformational Switching in Polyalanine at Solid Surfaces Using Molecular Simulation.<br>Journal of Physical Chemistry C, 2007, 111, 15839-15847.                                 | 1.5 | 13        |
| 50 | Control of the spatial homogeneity of pore surface chemistry in particulate activated carbon.<br>Carbon, 2015, 95, 144-149.                                                                | 5.4 | 13        |
| 51 | Oxygen reduction on chemically heterogeneous iron-containing nanoporous carbon: The effects of specific surface functionalities. Microporous and Mesoporous Materials, 2016, 221, 137-149. | 2.2 | 13        |
| 52 | Mathematical modelling of oscillations in the temperature of freely moving burning carbonaceous particles in bubbling fluidized beds. Fuel, 1993, 72, 805-811.                             | 3.4 | 11        |
| 53 | Mass diffusion of diatomic fluids in random micropore spaces using equilibrium molecular dynamics.<br>Physical Review E, 1994, 49, 531-537.                                                | 0.8 | 11        |
| 54 | Uncertainty in pore size distribution derived from adsorption isotherms: II. Adsorption integral approach. Microporous and Mesoporous Materials, 2015, 214, 217-223.                       | 2.2 | 11        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Tin Oxide Lightâ€Scattering Layer for Titania Photoanodes in Dyeâ€Sensitized Solar Cells. Energy<br>Technology, 2016, 4, 959-966.                                                                                                                          | 1.8 | 11        |
| 56 | Isosteric Heats of Adsorption of Gases and Vapors on a Microporous Carbonaceous Material. Journal of Chemical & Engineering Data, 2018, 63, 3107-3116.                                                                                                     | 1.0 | 11        |
| 57 | Granular temperature in a liquid fluidized bed as revealed by diffusing wave spectroscopy. Chemical Engineering Science, 2009, 64, 1102-1110.                                                                                                              | 1.9 | 10        |
| 58 | Explicit numerical simulation-based study of the hydrodynamics of micro-packed beds. Chemical Engineering Science, 2016, 145, 71-79.                                                                                                                       | 1.9 | 9         |
| 59 | Experimental study of efficient mixing in a micro-fluidized bed. Applied Thermal Engineering, 2017, 127, 1642-1649.                                                                                                                                        | 3.0 | 9         |
| 60 | Decoding gas-solid interaction effects on adsorption isotherm shape: I. Non-polar adsorptives.<br>Microporous and Mesoporous Materials, 2018, 264, 76-83.                                                                                                  | 2.2 | 9         |
| 61 | Solvent Effect on Supramolecular Self-Assembly of Chlorophylls a on Chemically Reduced Graphene<br>Oxide. Langmuir, 2020, 36, 13575-13582.                                                                                                                 | 1.6 | 9         |
| 62 | Particle dynamics in a vibrated submerged granular bed as revealed by diffusing wave spectroscopy.<br>Journal Physics D: Applied Physics, 2009, 42, 245404.                                                                                                | 1.3 | 8         |
| 63 | Uncertainty in pore size distribution derived from adsorption isotherms: I. Classical methods.<br>Microporous and Mesoporous Materials, 2015, 214, 210-216.                                                                                                | 2.2 | 8         |
| 64 | Detection of Ring and Adatom Defects in Activated Disordered Carbon via Fluctuation Nanobeam Electron Diffraction. Small, 2020, 16, 2000828.                                                                                                               | 5.2 | 8         |
| 65 | A new method for reconstruction of the structure of micro-packed beds of spherical particles from desktop X-ray microtomography images. Part A. Initial structure generation and porosity determination. Chemical Engineering Science, 2016, 146, 337-345. | 1.9 | 6         |
| 66 | Simultaneously â€~pushing' and â€~pulling' graphene oxide into low-polar solvents through a designed<br>interface. Nanotechnology, 2018, 29, 315707.                                                                                                       | 1.3 | 6         |
| 67 | On Use of the Amber Potential with the Langevin Dipole Method. Journal of Physical Chemistry B, 2007, 111, 7591-7602.                                                                                                                                      | 1.2 | 5         |
| 68 | On Potential Energy Models for EA-based Ab Initio Protein Structure Prediction. Evolutionary Computation, 2010, 18, 255-275.                                                                                                                               | 2.3 | 5         |
| 69 | Decoding gas-solid interaction effects on adsorption isotherm shape: II. Polar adsorptives.<br>Microporous and Mesoporous Materials, 2019, 278, 232-240.                                                                                                   | 2.2 | 5         |
| 70 | TNAMD: Implementation of TIGER2 in NAMD. Computer Physics Communications, 2010, 181, 2082-2085.                                                                                                                                                            | 3.0 | 3         |
| 71 | Granular pressure in a liquidâ€fluidized bed as revealed by diffusing wave spectroscopy. AICHE Journal, 2012, 58, 1069-1075.                                                                                                                               | 1.8 | 3         |
| 72 | Recent Progress of Research and Development of Adsorption Desalination. Journal of Chemical<br>Engineering of Japan, 2014, 47, 303-308.                                                                                                                    | 0.3 | 3         |

| #  | Article                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Characterizing the Switching Transitions of an Adsorbed Peptide by Mapping the Potential Energy<br>Surface. Journal of Physical Chemistry B, 2017, 121, 11455-11464. | 1.2 | 3         |
| 74 | Energy Landscape Mapping and Replica Exchange Molecular Dynamics of an Adsorbed Peptide. Journal of Physical Chemistry B, 2020, 124, 2527-2538.                      | 1.2 | 2         |
| 75 | Switching in of Ac-(Ala)10-NHMe at a solid surface. Nanomedicine: Nanotechnology, Biology, and<br>Medicine, 2008, 4, 262-265.                                        | 1.7 | 0         |
| 76 | Chemeca 2010. Energy & Fuels, 2011, 25, 2753-2753.                                                                                                                   | 2.5 | 0         |
| 77 | Low Energy Adsorption Desalination Technology. Advanced Materials Research, 0, 347-353, 601-606.                                                                     | 0.3 | 0         |
| 78 | Editorial to Chemeca 2010 Special Issue. Powder Technology, 2012, 223, 1-2.                                                                                          | 2.1 | 0         |
| 79 | Solar Power: Carbonaceous Dye-Sensitized Solar Cell Photoelectrodes (Adv. Sci. 3/2015). Advanced Science, 2015, 2, .                                                 | 5.6 | 0         |
| 80 | Back Cover: Solar RRL 3â€4â^•2017. Solar Rrl, 2017, 1, 1770113.                                                                                                      | 3.1 | 0         |