Fernando Atrio-Barandela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3415482/publications.pdf

Version: 2024-02-01

109 papers 14,786 citations

44069 48 h-index 100 g-index

109 all docs

109 docs citations

109 times ranked 11720 citing authors

#	Article	IF	CITATIONS
1	Fast Computational Convolution Methods for Extended Source Effects in Microlensing Light Curves. Astrophysical Journal, 2019, 880, 152.	4.5	2
2	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 610, C1.	5.1	5
3	Looking at cosmic near-infrared background radiation anisotropies. Reviews of Modern Physics, 2018, 90, .	45.6	45
4	Lensing and the Warm-hot Intergalactic Medium. Astrophysical Journal, 2017, 845, 71.	4.5	6
5	Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures. Reports on Progress in Physics, 2016, 79, 096901.	20.1	391
6	SZ/X-ray scaling relations using X-ray data and i>Planck /i>Nominal maps. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3222-3232.	4.4	8
7	PROBING THE DARK FLOW SIGNAL IN <i>WMAP</i> 9 -YEAR AND <i>PLANCK</i> COSMIC MICROWAVE BACKGROUND MAPS. Astrophysical Journal, 2015, 810, 143.	4.5	38
8	LYMAN-TOMOGRAPHY OF COSMIC INFRARED BACKGROUND FLUCTUATIONS WITH <code><i>EUCLID</i> : PROBING EMISSIONS</code> AND BARYONIC ACOUSTIC OSCILLATIONS AT <code><i>z</i> ≳ 10.</code> Astrophysical Journal Letters, 2015, 813, L12.	8.3	11
9	<i>Planck</i> 2013 results. XXXII. The updated <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2015, 581, A14.	5.1	80
10	Probingf(R) gravity with PLANCK data on cluster pressure profiles. Journal of Physics: Conference Series, 2015, 600, 012048.	0.4	3
11	<i>Planck</i> intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust. Astronomy and Astrophysics, 2015, 576, A104.	5.1	296
12	<i>Planck</i> intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence. Astronomy and Astrophysics, 2015, 576, A105.	5.1	119
13	<i>Planck</i> intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible. Astronomy and Astrophysics, 2015, 576, A106.	5.1	68
14	<i>Planck</i> intermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae. Astronomy and Astrophysics, 2015, 573, A6.	5.1	13
15	<i>Planck</i> intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization. Astronomy and Astr A107.	ophysics,	2 01 5, 576,
16	CONSTRAINING THE BARYON FRACTION IN THE WARM HOT INTERGALACTIC MEDIUM AT LOW REDSHIFTS WITH PLANCK DATA. Astrophysical Journal, 2015, 806, 113.	4.5	12
17	CONSTRAINING THE REDSHIFT EVOLUTION OF THE COSMIC MICROWAVE BACKGROUND BLACKBODY TEMPERATURE WITH <i>PLANCK </i> JOATA. Astrophysical Journal, 2015, 808, 128.	4.5	24
18	<i>Planck</i> 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 2014, 571, A14.	5.1	90

#	Article	IF	CITATIONS
19	<i>Planck</i> 2013 results. VI. High Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A6.	5.1	103
20	<i>Planck</i> 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation. Astronomy and Astrophysics, 2014, 571, A10.	5.1	68
21	<i>Planck</i> 2013 results. V. LFI calibration. Astronomy and Astrophysics, 2014, 571, A5.	5.1	67
22	<i>Planck</i> 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astronomy and Astrophysics, 2014, 571, A27.	5.1	170
23	<i>Planck</i> intermediate results. XV. A study of anomalous microwave emission in Galactic clouds. Astronomy and Astrophysics, 2014, 565, A103.	5.1	67
24	<i>Planck</i> 2013 results. III. LFI systematic uncertainties. Astronomy and Astrophysics, 2014, 571, A3.	5.1	54
25	<i>Planck</i> 2013 results. XII. Diffuse component separation. Astronomy and Astrophysics, 2014, 571, A12.	5.1	216
26	<i>Planck</i> 2013 results. XIII. Galactic CO emission. Astronomy and Astrophysics, 2014, 571, A13.	5.1	144
27	<i>Planck</i> 2013 results. XI. All-sky model of thermal dust emission. Astronomy and Astrophysics, 2014, 571, A11.	5.1	566
28	PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES. Astrophysical Journal Letters, 2014, 797, L26.	8.3	7
29	Constraining $f(R)$ gravity with Planck data on galaxy cluster profiles. Monthly Notices of the Royal Astronomical Society, 2014, 442, 921-928.	4.4	36
30	<i>Planck</i> 2013 results. I. Overview of products and scientific results. Astronomy and Astrophysics, 2014, 571, A1.	5.1	948
31	<i>Planck</i> 2013 results. XXX. Cosmic infrared background measurements and implications for star formation. Astronomy and Astrophysics, 2014, 571, A30.	5.1	210
32	<i>Planck</i> 2013 results. XXV. Searches for cosmic strings and other topological defects. Astronomy and Astrophysics, 2014, 571, A25.	5.1	223
33	<i>Planck</i> intermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane. Astronomy and Astrophysics, 2014, 564, A45.	5.1	55
34	<i>Planck</i> 2013 results. XV. CMB power spectra and likelihood. Astronomy and Astrophysics, 2014, 571, A15.	5.1	364
35	<i>Planck</i> 2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20.	5.1	465
36	<i>Planck</i> 2013 results. XXI. Power spectrum and high-order statistics of the <i>Planck</i> all-sky Compton parameter map. Astronomy and Astrophysics, 2014, 571, A21.	5.1	133

#	Article	IF	Citations
37	<i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29.	5.1	380
38	<i>Planck</i> 2013 results. XXVIII. The <i>Planck</i> Catalogue of Compact Sources. Astronomy and Astrophysics, 2014, 571, A28.	5.1	162
39	<i>Planck</i> 2013 results. XIX. The integrated Sachs-Wolfe effect. Astronomy and Astrophysics, 2014, 571, A19.	5.1	126
40	<i>Planck</i> 2013 results. IX. HFI spectral response. Astronomy and Astrophysics, 2014, 571, A9.	5.1	129
41	<i>Planck</i> 2013 results. XXIII. Isotropy and statistics of the CMB. Astronomy and Astrophysics, 2014, 571, A23.	5.1	367
42	<i>Planck</i> 2013 results. VII. HFI time response and beams. Astronomy and Astrophysics, 2014, 571, A7.	5.1	99
43	<i>Planck</i> 2013 results. VIII. HFI photometric calibration and mapmaking. Astronomy and Astrophysics, 2014, 571, A8.	5.1	107
44	<i>Planck</i> 2013 results. XVIII. The gravitational lensing-infrared background correlation. Astronomy and Astrophysics, 2014, 571, A18.	5.1	116
45	<i>Planck</i> 2013 results. IV. Low Frequency Instrument beams and window functions. Astronomy and Astrophysics, 2014, 571, A4.	5.1	41
46	<i>Planck</i> 2013 results. XXVI. Background geometry and topology of the Universe. Astronomy and Astrophysics, 2014, 571, A26.	5.1	91
47	<i>Planck</i> 2013 results. II. Low Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A2.	5.1	74
48	<i>Planck</i> 2013 results. XVII. Gravitational lensing by large-scale structure. Astronomy and Astrophysics, 2014, 571, A17.	5.1	272
49	<i>Planck</i> 2013 results. XXIV. Constraints on primordial non-Gaussianity. Astronomy and Astrophysics, 2014, 571, A24.	5.1	350
50	<i>Planck</i> 2013 results. XXII. Constraints on inflation. Astronomy and Astrophysics, 2014, 571, A22.	5.1	806
51	<i>Planck</i> 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 2014, 571, A16.	5.1	4,703
52	The effect of dark matter and dark energy interactions on the peculiar velocity field and the kinetic Sunyaev-Zel'dovich effect. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 001-001.	5.4	35
53	The contribution of the warm-hot intergalactic medium to the cosmic microwave background anisotropies via the Sunyaev–Zeldovich effect. Monthly Notices of the Royal Astronomical Society, 2013, 431, 342-348.	4.4	6
54	Constraints on the Sunyaev–Zel'dovich signal from the warm–hot intergalactic medium from WMAP and SPT data. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2480-2487.	4.4	6

#	Article	IF	CITATIONS
55	THE SIGNATURE OF THE WARM-HOT INTERGALACTIC MEDIUM IN <i>WMAP</i> AND THE FORTHCOMING <i>PLANCK</i> DATA. Astrophysical Journal, 2013, 769, 25.	4.5	3
56	On the statistical significance of the bulk flow measured by the <i>Planck </i> satellite. Astronomy and Astrophysics, 2013, 557, A116.	5.1	18
57	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 557, A52.	5.1	141
58	<i>Planck</i> Âintermediate results. XII: Diffuse Galactic components in the Gould Belt system. Astronomy and Astrophysics, 2013, 557, A53.	5.1	19
59	<i>Planck</i> intermediate results <i>(Corrigendum)</i> . Astronomy and Astrophysics, 2013, 558, C2.	5.1	4
60	The matter power spectrum of dark energy models and the Harrison-Zel'dovich prescription. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 008-008.	5.4	2
61	Large scale peculiar velocities from clusters of galaxies: Is the universe tilted?. , 2012, , .		0
62	The matter power spectrum as a test of cosmological models. , 2012, , .		0
63	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2012, 543, A102.	5.1	50
64	MEASURING THE REDSHIFT DEPENDENCE OF THE COSMIC MICROWAVE BACKGROUND MONOPOLE TEMPERATURE WITH PLANCK DATA. Astrophysical Journal, 2012, 757, 144.	4.5	17
65	MEASURING THE DARK FLOW WITH PUBLIC X-RAY CLUSTER DATA. Astrophysical Journal, 2011, 732, 1.	4.5	64
66	<i>Planck</i> early results. XXVI. Detection with <i>Planck</i> and confirmation by <i>XMM-Newton</i> of PLCKÂG266.6–27.3, an exceptionally X-ray luminous and massive galaxy cluster at <i>z</i> Â~Â 1. Astronomy and Astrophysics, 2011, 536, A26.	5.1	72
67	Bulk flows from clusters of galaxies. Journal of Physics: Conference Series, 2011, 314, 012083.	0.4	0
68	Bulk flows in inflation and in Lemaître-Tolman-Bondi models. Journal of Physics: Conference Series, 2010, 229, 012003.	0.4	2
69	A NEW MEASUREMENT OF THE BULK FLOW OF X-RAY LUMINOUS CLUSTERS OF GALAXIES. Astrophysical Journal Letters, 2010, 712, L81-L85.	8.3	157
70	THE ERROR BUDGET OF THE DARK FLOW MEASUREMENT. Astrophysical Journal, 2010, 719, 77-87.	4.5	22
71	A MEASUREMENT OF LARGE-SCALE PECULIAR VELOCITIES OF CLUSTERS OF GALAXIES: TECHNICAL DETAILS. Astrophysical Journal, 2009, 691, 1479-1493.	4.5	71
72	THE CONTRIBUTION OF THE KINEMATIC SUNYAEV-ZEL'DOVICH EFFECT FROM THE WARM-HOT INTERGALACTIC MEDIUM TO THE FIVE-YEAR <i>>WILKINSON MICROWAVE ANISOTROPY PROBE</i> Journal, 2009, 700, 447-453.	4.5	11

#	Article	IF	CITATIONS
73	Integrated Sachs-Wolfe effect in interacting dark energy models. Physical Review D, 2008, 77, .	4.7	33
74	Dynamics of interacting quintessence models: Observational constraints. Physical Review D, 2008, 77, .	4.7	80
7 5	Kinematic Sunyaev-Zel'dovich Cosmic Microwave Background Temperature Anisotropies Generated by Gas in Cosmic Structures. Astrophysical Journal, 2008, 674, L61-L64.	4.5	19
76	Measurement of the Electron-Pressure Profile of Galaxy Clusters in 3 Year <i>Wilkinson Microwave Anisotropy Probe</i> (<i>WMAP</i>) Data. Astrophysical Journal, 2008, 675, L57-L60.	4.5	48
77	The Coincidence Problem in Cosmology. EAS Publications Series, 2008, 30, 81-91.	0.3	О
78	A Measurement of Large-Scale Peculiar Velocities of Clusters of Galaxies: Results and Cosmological Implications. Astrophysical Journal, 2008, 686, L49-L52.	4.5	223
79	THE MATTER POWER SPECTRUM AS A TOOL TO DISCRIMINATE DARK MATTER-DARK ENERGY INTERACTIONS. , 2008, , .		0
80	Matter density perturbations in interacting quintessence models. Physical Review D, 2006, 74, .	4.7	117
81	The Contribution of the Intergalactic Medium to Cosmic Microwave Background Anisotropies. Astrophysical Journal, 2006, 643, 1-7.	4.5	20
82	Constraining dark energy interacting models with WMAP. AIP Conference Proceedings, 2006, , .	0.4	3
83	Is there Any Evidence for Integrated Sachs-Wolfe Signal in WMAP First Year Data?. AIP Conference Proceedings, 2006, , .	0.4	1
84	Observational constraints on interacting quintessence models. Physical Review D, 2005, 71, .	4.7	181
85	The Effect of Hot Gas in the First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Data. Astrophysical Journal, 2004, 613, L89-L92.	4.5	35
86	Measuring the Mach Number of the Universe via the Sunyaev-Zeldovich Effect. Astrophysical Journal, 2004, 601, L111-L114.	4.5	16
87	Using peak distribution of the cosmic microwave background for WMAP and Planck data analysis: Formalism and simulations. Astronomy and Astrophysics, 2004, 413, 833-842.	5.1	7
88	Observational Matter Power Spectrum and the Height of the Second Acoustic Peak. Astrophysical Journal, 2001, 559, 1-8.	4.5	7
89	Comment on "Self-interacting warm dark matter― Physical Review D, 2001, 64, .	4.7	2
90	Determining Cosmic Microwave Background Structure from Its Peak Distribution. Astrophysical Journal, 2001, 557, L1-L5.	4.5	11

#	Article	IF	CITATIONS
91	On the Number Density of Sunyaev-Zeldovich Clusters of Galaxies. Astrophysical Journal, 2000, 528, L69-L72.	4.5	4
92	Measuring Cosmological Bulk Flows via the Kinematic Sunyaev-Zeldovich Effect in the Upcoming Cosmic Microwave Background Maps. Astrophysical Journal, 2000, 536, L67-L71.	4.5	45
93	Limits on Hot Intracluster Gas Contributions to the Tenerife Temperature Anisotropy Map. Astrophysical Journal, 2000, 538, 53-56.	4.5	5
94	Steps toward the Power Spectrum of Matter. II. The Biasing Correction with $\sharp f 8 \text{Normalization}$. Astrophysical Journal, 1999, 519, 456-468.	4.5	23
95	Steps toward the Power Spectrum of Matter. III. The Primordial Spectrum. Astrophysical Journal, 1999, 519, 469-478.	4.5	10
96	Temperature Anisotropies and Distortions Induced by Hot Intracluster Gas on the Cosmic Microwave Background. Astrophysical Journal, 1999, 515, 465-470.	4.5	39
97	Steps toward the Power Spectrum of Matter. I. The Mean Spectrum of Galaxies. Astrophysical Journal, 1999, 519, 441-455.	4.5	22
98	Interacting hot dark matter. Physical Review D, 1997, 55, 5886-5894.	4.7	22
99	A built-in scale in the initial spectrum of density perturbations: Evidence from cluster and CMB data. JETP Letters, 1997, 66, 397-403.	1.4	13
100	The Power Spectrum of Microwave Background Temperature Anisotropies Measured by the Tenerife Experiment. Astrophysical Journal, 1997, 482, 1-5.	4.5	3
101	Is a Harrison-Zeldovich Power Spectrum Compatible with the Tenerife Cosmic Microwave Background Experiment?. Astrophysical Journal, 1996, 465, 523.	4.5	0
102	Cosmic microwave background temperature fluctuations and gravitational waves. Physical Review D, 1994, 49, 1126-1129.	4.7	9
103	Secondary ionization in a flat universe. Astrophysical Journal, 1994, 420, 26.	4.5	8
104	Microwave Background Temperature Fluctuations. Annals of the New York Academy of Sciences, 1993, 688, 833-835.	3.8	0
105	The Great Wall in the CfA survey - Its origin and imprint on the microwave background radiation. Astrophysical Journal, 1992, 390, 322.	4.5	4
106	Gravitational field fluctuations in weakly clustered systems. Astrophysical Journal, 1992, 392, 403.	4.5	12
107	Fluctuations of the microwave background radiation on large and intermediate angular scales. Astrophysical Journal, 1991, 378, 1.	4.5	7
108	Stochasticity in galactic models. Astrophysics and Space Science, 1990, 170, 385-387.	1.4	O

ARTICLE IF CITATIONS

109 Measuring Bulk Flows with the Kinematic Sunyaev-Zeldovich Effect in CMB Maps., 0, , 473-475. 0