Andrea Armani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3415437/publications.pdf

Version: 2024-02-01

45 papers

3,897 citations

218381 26 h-index 253896 43 g-index

48 all docs

48 docs citations

48 times ranked

8588 citing authors

#	Article	IF	CITATIONS
1	Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature Cell Biology, 2015, 17, 288-299.	4.6	1,006
2	Regulation of autophagy and the ubiquitin–proteasome system by the FoxO transcriptional network during muscle atrophy. Nature Communications, 2015, 6, 6670.	5.8	522
3	Transcription Factor EB Controls Metabolic Flexibility during Exercise. Cell Metabolism, 2017, 25, 182-196.	7.2	250
4	Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). Journal of Endocrinological Investigation, 2019, 42, 1365-1386.	1.8	167
5	Fibroblast growth factor 21 controls mitophagy and muscle mass. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 630-642.	2.9	143
6	Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in highâ€fatâ€dietâ€fed mice. FASEB Journal, 2014, 28, 3745-3757.	0.2	139
7	PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skeletal Muscle, 2015, 5, 9.	1.9	136
8	Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. Journal of Cellular Biochemistry, 2010, 110, 564-572.	1.2	129
9	The role of the mineralocorticoid receptor in adipocyte biology and fat metabolism. Molecular and Cellular Endocrinology, 2012, 350, 281-288.	1.6	109
10	Essential role of ICAM-1 in aldosterone-induced atherosclerosis. International Journal of Cardiology, 2017, 232, 233-242.	0.8	104
11	Aldosterone Increases Early Atherosclerosis and Promotes Plaque Inflammation Through a Placental Growth Factorâ€Dependent Mechanism. Journal of the American Heart Association, 2013, 2, e000018.	1.6	102
12	<scp>TFE</scp> 3 regulates wholeâ€body energy metabolism in cooperation with <scp>TFEB</scp> . EMBO Molecular Medicine, 2017, 9, 605-621.	3.3	101
13	Spatial Distribution and Diverse Metabolic Functions of Lignocellulose-Degrading Uncultured Bacteria as Revealed by Genome-Centric Metagenomics. Applied and Environmental Microbiology, 2018, 84, .	1.4	72
14	Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9006-E9015.	3.3	70
15	Mineralocorticoid Receptors in Metabolic Syndrome: From Physiology to Disease. Trends in Endocrinology and Metabolism, 2020, 31, 205-217.	3.1	64
16	Mineralocorticoid receptor in adipocytes and macrophages: A promising target to fight metabolic syndrome. Steroids, 2014, 91, 46-53.	0.8	58
17	Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle. Cell Reports, 2019, 26, 3784-3797.e8.	2.9	55
18	Molecular mechanisms underlying metabolic syndrome: the expanding role of the adipocyte. FASEB Journal, 2017, 31, 4240-4255.	0.2	53

#	Article	IF	CITATIONS
19	Molecular interactions with obscurin are involved in the localization of muscle-specific small ankyrin1 isoforms to subcompartments of the sarcoplasmic reticulum. Experimental Cell Research, 2006, 312, 3546-3558.	1.2	51
20	Phosphodiesterase type 5 (PDE5) in the adipocyte: a novel player in fat metabolism?. Trends in Endocrinology and Metabolism, 2011, 22, 404-411.	3.1	44
21	Role of mineralocorticoid receptor and renin–angiotensin–aldosterone system in adipocyte dysfunction and obesity. Journal of Steroid Biochemistry and Molecular Biology, 2013, 137, 99-106.	1.2	39
22	The novel nonâ€steroidal MR antagonist finerenone improves metabolic parameters in highâ€fat dietâ€fed mice and activates brown adipose tissue viaÂAMPKâ€ATGL pathway. FASEB Journal, 2020, 34, 12450-12465.	0.2	38
23	Exposure to Phosphodiesterase Type 5 Inhibitors Stimulates Aromatase Expression in Human Adipocytes in vitro. Journal of Sexual Medicine, 2011, 8, 696-704.	0.3	37
24	Impact of Adrenal Steroids on Regulation of Adipose Tissue. , 2017, 7, 1425-1447.		37
25	Insulin/IGF1 signalling mediates the effects of β ₂ â€adrenergic agonist on muscle proteostasis and growth. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 455-475.	2.9	33
26	Effects of a short-term exercise training on serum factors involved in ventricular remodelling in chronic heart failure patients. International Journal of Cardiology, 2012, 155, 409-413.	0.8	31
27	Cellular mechanisms of MR regulation of adipose tissue physiology and pathophysiology. Journal of Molecular Endocrinology, 2015, 55, R1-R10.	1.1	29
28	Exploring the Role of Skeletal Muscle in Insulin Resistance: Lessons from Cultured Cells to Animal Models. International Journal of Molecular Sciences, 2021, 22, 9327.	1.8	29
29	A novel combined glucocorticoid-mineralocorticoid receptor selective modulator markedly prevents weight gain and fat mass expansion in mice fed a high-fat diet. International Journal of Obesity, 2016, 40, 964-972.	1.6	27
30	Multimodal label-free ex vivo imaging using a dual-wavelength microscope with axial chromatic aberration compensation. Journal of Biomedical Optics, 2018, 23, 1.	1.4	27
31	A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the Streptococcus thermophilus M17PTZA496. Viruses, 2019, 11, 7.	1.5	26
32	Differential expression of perilipin 2 and 5 in human skeletal muscle during aging and their association with atrophy-related genes. Biogerontology, 2015, 16, 329-340.	2.0	23
33	Peripheral blood mononuclear cells from mild cognitive impairment patients show deregulation of Bax and Sod1 mRNAs. Neuroscience Letters, 2009, 453, 36-40.	1.0	20
34	Mineralocorticoid Receptor and Aldosterone-Related Biomarkers of End-Organ Damage in Cardiometabolic Disease. Biomolecules, 2018, 8, 96.	1.8	20
35	Muscleâ€specific Perilipin2 downâ€regulation affects lipid metabolism and induces myofiber hypertrophy. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 95-110.	2.9	20
36	SIRT5 Inhibition Induces Brown Fat-Like Phenotype in 3T3-L1 Preadipocytes. Cells, 2021, 10, 1126.	1.8	16

3

#	Article	IF	CITATIONS
37	Mineralocorticoid vs glucocorticoid receptors: solo players or team mates in the control of adipogenesis?. International Journal of Obesity, 2014, 38, 1580-1581.	1.6	15
38	Induction of Atherosclerotic Plaques Through Activation of Mineralocorticoid Receptors in Apolipoprotein E-deficient Mice. Journal of Visualized Experiments, 2018, , .	0.2	13
39	Minor role of mature adipocyte mineralocorticoid receptor in high-fat diet-induced obesity. Journal of Endocrinology, 2018, 239, 229-240.	1.2	13
40	Adipocyte Mineralocorticoid Receptor. Vitamins and Hormones, 2019, 109, 189-209.	0.7	11
41	Altered Tregs Differentiation and Impaired Autophagy Correlate to Atherosclerotic Disease. Frontiers in Immunology, 2020, 11, 350.	2.2	8
42	VLCKD in Combination with Physical Exercise Preserves Skeletal Muscle Mass in Sarcopenic Obesity after Severe COVID-19 Disease: A Case Report. Healthcare (Switzerland), 2022, 10, 573.	1.0	5
43	Comment on "mineralocorticoid antagonism enhances brown adipose tissue function in humans: A randomized placeboâ€controlled crossâ€over study― Diabetes, Obesity and Metabolism, 2019, 21, 2024-2026.	2.2	4
44	Prevention of Adverse Metabolic Consequences of Adipocyte Dysfunction Using MR Antagonists. , 2016, , 157-167.		0
45	Mineralocorticoid Receptor in Novel Target Tissues: A Closer Look at the Adipocyte. , 0, , .		0