Tae Kyu An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3415435/publications.pdf

Version: 2024-02-01

186265 214800 2,996 135 28 47 h-index citations g-index papers 141 141 141 4231 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Effect of Selenophene in a DPP Copolymer Incorporating a Vinyl Group for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2013, 25, 524-528.	21.0	230
2	Benzotriazole-Containing Planar Conjugated Polymers with Noncovalent Conformational Locks for Thermally Stable and Efficient Polymer Field-Effect Transistors. Chemistry of Materials, 2014, 26, 2147-2154.	6.7	167
3	Hâ€Aggregation Strategy in the Design of Molecular Semiconductors for Highly Reliable Organic Thin Film Transistors. Advanced Functional Materials, 2011, 21, 1616-1623.	14.9	146
4	Complementary Absorbing Starâ€Shaped Small Molecules for the Preparation of Ternary Cascade Energy Structures in Organic Photovoltaic Cells. Advanced Functional Materials, 2013, 23, 1556-1565.	14.9	138
5	Hybrid-Type Quantum-Dot Cosensitized ZnO Nanowire Solar Cell with Enhanced Visible-Light Harvesting. ACS Applied Materials & Samp; Interfaces, 2013, 5, 268-275.	8.0	85
6	Alkyl Chain Length Dependence of the Field-Effect Mobility in Novel Anthracene Derivatives. ACS Applied Materials & Samp; Interfaces, 2015, 7, 351-358.	8.0	80
7	Effects of direct solvent exposure on the nanoscale morphologies and electrical characteristics of PCBM-based transistors and photovoltaics. Journal of Materials Chemistry, 2012, 22, 5543.	6.7	79
8	Solvent Additive to Achieve Highly Ordered Nanostructural Semicrystalline DPP Copolymers: Toward a High Charge Carrier Mobility. Advanced Materials, 2013, 25, 7003-7009.	21.0	71
9	Recently Advanced Polymer Materials Containing Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]phosphole Oxide Efficient Charge Transfer in Highâ€Performance Solar Cells. Advanced Functional Materials, 2015, 25, 3991-3997.	for 14.9	56
10	Solution-processed flexible ZnO transparent thin-film transistors with a polymer gate dielectric fabricated by microwave heating. Nanotechnology, 2009, 20, 465201.	2.6	45
11	Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5499-5508.	8.0	45
12	Synthesis and Transistor Properties of Asymmetric Oligothiophenes: Relationship between Molecular Structure and Device Performance. Chemistry - A European Journal, 2013, 19, 14052-14060.	3.3	39
13	Enhancing Light Absorption and Prolonging Charge Separation in Carbon Quantum Dots <i>via</i> Cl-Doping for Visible-Light-Driven Photocharge-Transfer Reactions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34648-34657.	8.0	39
14	Optimization of Al ₂ O ₃ /TiO ₂ nanolaminate thin films prepared with different oxide ratios, for use in organic light-emitting diode encapsulation, via plasma-enhanced atomic layer deposition. Physical Chemistry Chemical Physics, 2016, 18, 1042-1049.	2.8	38
15	Facile and Microcontrolled Blade Coating of Organic Semiconductor Blends for Uniaxial Crystal Alignment and Reliable Flexible Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 13481-13490.	8.0	38
16	Electrohydrodynamic printing of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) electrodes with ratio-optimized surfactant. RSC Advances, 2016, 6, 2004-2010.	3.6	37
17	Highly Efficient Visible Blue-Emitting Black Phosphorus Quantum Dot: Mussel-Inspired Surface Functionalization for Bioapplications. ACS Omega, 2017, 2, 7096-7105.	3.5	37
18	Highly stable fluorine-rich polymer treated dielectric surface for the preparation of solution-processed organic field-effect transistors. Journal of Materials Chemistry C, 2013, 1, 1272-1278.	5.5	36

#	Article	IF	CITATIONS
19	Self-Assembly of Carbon Nanotubes and Boron Nitride via Electrostatic Interaction for Epoxy Composites of High Thermal Conductivity and Electrical Resistivity. Macromolecular Research, 2018, 26, 521-528.	2.4	36
20	High-Performance Organic Complementary Inverters Using Monolayer Graphene Electrodes. ACS Applied Materials & Diterfaces, 2014, 6, 6816-6824.	8.0	35
21	A new multi-functional conjugated polymer for use in high-performance bulk heterojunction solar cells. Chemical Communications, 2015, 51, 11572-11575.	4.1	35
22	Engineering Aggregationâ€Resistant MXene Nanosheets As Highly Conductive and Stable Inks for Allâ€Printed Electronics. Advanced Functional Materials, 2021, 31, 2010897.	14.9	35
23	Grafting Fluorinated Polymer Nanolayer for Advancing the Electrical Stability of Organic Field-Effect Transistors. Chemistry of Materials, 2014, 26, 6467-6476.	6.7	34
24	Effects of Cyano-Substituents on the Molecular Packing Structures of Conjugated Polymers for Bulk-Heterojunction Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15774-15782.	8.0	33
25	Direct writing of silver nanowire electrodes via dragging mode electrohydrodynamic jet printing for organic thin film transistors. Organic Electronics, 2018, 62, 357-365.	2.6	33
26	Facile Photo-cross-linking System for Polymeric Gate Dielectric Materials toward Solution-Processed Organic Field-Effect Transistors: Role of a Cross-linker in Various Polymer Types. ACS Applied Materials & Dielectric Role of Science (1988) 12, 30600-30615.	8.0	33
27	A composite of a graphene oxide derivative as a novel sensing layer in an organic field-effect transistor. Journal of Materials Chemistry C, 2014, 2, 4539-4544.	5.5	32
28	Synthesis and Characterization of New Thermally Stable Poly(naphthodithiophene) Derivatives and Applications for High-Performance Organic Thin Film Transistors. Macromolecules, 2012, 45, 4520-4528.	4.8	31
29	Highly-impermeable Al2O3/HfO2 moisture barrier films grown by low-temperature plasma-enhanced atomic layer deposition. Organic Electronics, 2017, 50, 296-303.	2.6	29
30	All-Small-Molecule Solar Cells Incorporating NDI-Based Acceptors: Synthesis and Full Characterization. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44667-44677.	8.0	29
31	High Tg cyclic olefin copolymer/Al2O3 bilayer gate dielectrics for flexible organic complementary circuits with low-voltage and air-stable operation. Journal of Materials Chemistry, 2011, 21, 12542.	6.7	28
32	Ambipolar thin-film transistors and an inverter based on pentacene/self-assembled monolayer modified ZnO hybrid structures for balanced hole and electron mobilities. Organic Electronics, 2011, 12, 411-418.	2.6	28
33	Diketopyrrolopyrrole (DPP)-Based Polymers and Their Organic Field-Effect Transistor Applications: A Review. Macromolecular Research, 2022, 30, 71-84.	2.4	28
34	Thieno[3,4â€ <i>c</i>]pyrroleâ€4,6â€dioneâ€Based Small Molecules for Highly Efficient Solutionâ€Processed Organic Solar Cells. Chemistry - an Asian Journal, 2014, 9, 1045-1053.	3.3	27
35	A novel design of donor–acceptor polymer semiconductors for printed electronics: application to transistors and gas sensors. Journal of Materials Chemistry C, 2020, 8, 8410-8419.	5.5	27
36	Effects of semiconductor/dielectric interfacial properties on the electrical performance of top-gate organic transistors. Organic Electronics, 2014, 15, 1299-1305.	2.6	26

#	Article	IF	Citations
37	DTBDT-TTPD: a new dithienobenzodithiophene-based small molecule for use in efficient photovoltaic devices. Journal of Materials Chemistry A, 2014, 2, 16443-16451.	10.3	25
38	Photopatternable, highly conductive and low work function polymer electrodes for high-performance n-type bottom contact organic transistors. Organic Electronics, 2011, 12, 516-519.	2.6	24
39	Fabrication of high-performance composite electrodes composed of multiwalled carbon nanotubes and glycerol-doped poly(3,4-ethylenedioxythiophene):polystyrene sulfonate for use in organic devices. Journal of Materials Chemistry C, 2015, 3, 7325-7335.	5.5	24
40	Unified film patterning and annealing of an organic semiconductor with micro-grooved wet stamps. Journal of Materials Chemistry C, 2016, 4, 6996-7003.	5.5	24
41	Electrohydrodynamic (EHD) jet printing of carbon-black composites for solution-processed organic field-effect transistors. Organic Electronics, 2019, 73, 279-285.	2.6	24
42	Photo-patternable high-k ZrOx dielectrics prepared using zirconium acrylate for low-voltage-operating organic complementary inverters. Organic Electronics, 2016, 33, 40-47.	2.6	23
43	Molecular aggregation–performance relationship in the design of novel cyclohexylethynyl end-capped quaterthiophenes for solution-processed organic transistors. Dyes and Pigments, 2013, 96, 756-762.	3.7	21
44	Polymer–nanocrystal hybrid photodetectors with planar heterojunctions designed strategically to yield a high photoconductive gain. Applied Physics Letters, 2013, 102, 193306.	3.3	21
45	Synthesis and electrical properties of novel oligomer semiconductors for organic field-effect transistors (OFETs): Asymmetrically end-capped acene-heteroacene conjugated oligomers. Dyes and Pigments, 2015, 112, 220-226.	3.7	21
46	Effective Way To Enhance the Electrode Performance of Multiwall Carbon Nanotube and Poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) Composite Using HCl–Methanol Treatment. Journal of Physical Chemistry C, 2016, 120, 10919-10926.	3.1	21
47	Understanding Structure–Property Relationships in All-Small-Molecule Solar Cells Incorporating a Fullerene or Nonfullerene Acceptor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36037-36046.	8.0	21
48	Effect of lateral confinement on crystallization behavior of a small-molecule semiconductor during capillary force lithography for use in high-performance OFETs. Journal of Industrial and Engineering Chemistry, 2019, 75, 187-193.	5.8	19
49	Thin Film Morphology Control via a Mixed Solvent System for High-Performance Organic Thin Film Transistors. Science of Advanced Materials, 2013, 5, 1323-1327.	0.7	19
50	Novel naphthalene-diimide-based small molecule with a bithiophene linker for use in organic field-effect transistors. Organic Electronics, 2018, 63, 250-256.	2.6	18
51	A Battery-Free, Chipless, Highly Sensitive LC Pressure Sensor Tag Using PEDOT: PSS and Melamine Foam. IEEE Sensors Journal, 2021, 21, 2184-2193.	4.7	18
52	Small asymmetric anthracene–thiophene compounds as organic thin-film transistors. Tetrahedron, 2013, 69, 8191-8198.	1.9	17
53	Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39493-39501.	8.0	17
54	Synthesis and characterization of new TPD-based copolymers and applications in bulk heterojunction solar cells. Macromolecular Research, 2018, 26, 29-34.	2.4	17

#	Article	IF	CITATIONS
55	Highly stable flexible organic field-effect transistors with Parylene-C gate dielectrics on a flexible substrate. Organic Electronics, 2019, 75, 105391.	2.6	17
56	Advanced thin gas barriers film incorporating alternating structure of PEALD-based Al2O3/organic-inorganic nanohybrid layers. Applied Surface Science, 2019, 475, 926-933.	6.1	17
57	Synthesis and characterization of a fluorinated oligosiloxane-containing encapsulation material for organic field-effect transistors, prepared via a non-hydrolytic sol–gel process. Organic Electronics, 2012, 13, 2786-2792.	2.6	16
58	Molecular design and ordering effects of alkoxy aromatic donor in a DPP copolymer on OTFTs and OPVs. Materials Chemistry and Physics, 2015, 153, 63-71.	4.0	16
59	End-group tuning of DTBDT-based small molecules for organic photovoltaics. Dyes and Pigments, 2018, 157, 93-100.	3.7	15
60	Enhanced doping efficiency and thermoelectric performance of diketopyrrolopyrrole-based conjugated polymers with extended thiophene donors. Journal of Materials Chemistry C, 2021, 9, 340-347.	5.5	15
61	Thermally stable amorphous polymeric semiconductors containing fluorene and thiophene for use in organic photovoltaic cells. Organic Electronics, 2010, 11, 1534-1542.	2.6	14
62	High-speed solution-processed organic single crystal transistors using a novel triisopropylsilylethynyl anthracene derivative. Applied Physics Letters, 2012, 101, .	3.3	14
63	A side chain-modified quaterthiophene derivative for enhancing the performance of organic solar cell devices. Journal of Materials Chemistry, 2012, 22, 15141.	6.7	14
64	Dielectric surface-polarity tuning and enhanced operation stability of solution-processed organic field-effect transistors. Organic Electronics, 2015, 17, 87-93.	2.6	14
65	A dithienophosphole-thienylenevinylene-based donor-acceptor copolymer for organic field-effect transistors. Macromolecular Research, 2016, 24, 629-633.	2.4	14
66	Quinacridone-quinoxaline-based copolymer for organic field-effect transistors and its high-voltage logic circuit operations. Organic Electronics, 2018, 56, 1-4.	2.6	14
67	Printed Water-Based ITO Nanoparticle via Electrohydrodynamic (EHD) Jet Printing and Its Application of ZnO Transistors. Electronic Materials Letters, 2019, 15, 595-604.	2.2	14
68	A critical role of amphiphilic polymers in organic–inorganic hybrid sol–gel derived gate dielectrics for flexible organic thin-film transistors. Journal of Materials Chemistry C, 2019, 7, 11612-11620.	5.5	14
69	Effect of the length of a symmetric branched side chain on charge transport in thienoisoindigo-based polymer field-effect transistors. Organic Electronics, 2019, 65, 251-258.	2.6	13
70	The Hidden Potential of Polysilsesquioxane for Highâ€ <i>k</i> : Analysis of the Origin of its Dielectric Nature and Practical Lowâ€Voltageâ€Operating Applications beyond the Unit Device. Advanced Functional Materials, 2022, 32, 2104030.	14.9	13
71	Reduced water vapor transmission rates of low-temperature-processed and sol-gel-derived titanium oxide thin films on flexible substrates. Organic Electronics, 2016, 36, 133-139.	2.6	12
72	Pressure-sensitive adhesive composites with a hydrophobic form of graphene oxide for enhanced thermal conductivity. Macromolecular Research, 2016, 24, 1070-1076.	2.4	12

#	Article	IF	Citations
73	Ultrasmooth transparent conductive hybrid films of reduced graphene oxide and single-walled carbon nanotube by ultrasonic spraying. Synthetic Metals, 2016, 221, 340-344.	3.9	12
74	Systematic optimization of MWCNT-PEDOT:PSS composite electrodes for organic transistors and dye-sensitized solar cells: Effects of MWCNT diameter and purity. Organic Electronics, 2018, 52, 7-16.	2.6	12
75	Synthetic strategy for thienothiophene-benzotriazole-based polymers with high backbone planarity and solubility for field-effect transistor applications. Journal of Industrial and Engineering Chemistry, 2020, 86, 150-157.	5.8	12
76	Omnidirectionally Stretchable Organic Transistors for Use in Wearable Electronics: Ensuring Overall Stretchability by Applying Nonstretchable Wrinkled Components. ACS Applied Materials & Interfaces, 2020, 12, 32979-32986.	8.0	12
77	Solution-processed n-type fullerene field-effect transistors prepared using CVD-grown graphene electrodes: improving performance with thermal annealing. Physical Chemistry Chemical Physics, 2015, 17, 6635-6643.	2.8	11
78	Solvent boiling point affects the crystalline properties and performances of anthradithiophene-based devices. Dyes and Pigments, 2015, 114, 60-68.	3.7	11
79	A novel small molecule based on dithienophosphole oxide for bulk heterojunction solar cells without pre- or post-treatments. Dyes and Pigments, 2017, 142, 516-523.	3.7	11
80	High-efficiency nitrene-based crosslinking agent for robust dielectric layers and high-performance solution-processed organic field-effect transistors. Applied Surface Science, 2019, 479, 280-286.	6.1	11
81	Surface-modified quantum-dot floating layer using novel thiol with large dipole moment for improved feasibility of light-erasable organic transistor memory applications. Journal of Industrial and Engineering Chemistry, 2020, 85, 111-117.	5.8	11
82	Advanced Organic Transistor-Based Sensors Utilizing a Solvatochromic Medium with Twisted Intramolecular Charge-Transfer Behavior and Its Application to Ammonia Gas Detection. ACS Applied Materials & Detection.	8.0	11
83	Surface modification with MK-2 organic dye in a ZnO/P3HT hybrid solar cell: Impact on device performance. APL Materials, 2014, 2, .	5.1	10
84	Synthesis, characterization, and transistor applications of new linear small molecules: Naphthyl-ethynyl-anthracene-based small molecules containing different alkyl end group. Dyes and Pigments, 2016, 131, 349-355.	3.7	10
85	Development of Organic Semiconductors Based on Quinacridone Derivatives for Organic Field-Effect Transistors: High-Voltage Logic Circuit Applications. IEEE Journal of the Electron Devices Society, 2017, 5, 209-213.	2.1	10
86	Thienothiophene-benzotriazole-based semicrystalline linear copolymers for organic field effect transistors. Pure and Applied Chemistry, 2014, 86, 1293-1302.	1.9	9
87	Photo-enhanced polymer memory device based on polyimide containing spiropyran. Electronic Materials Letters, 2016, 12, 537-544.	2.2	9
88	Accelerated lifetime test based on general electrical principles for light-emitting electrochemical cells. Organic Electronics, 2016, 34, 50-56.	2.6	9
89	New dithienophosphole-based donor–acceptor alternating copolymers: Synthesis and structure property relationships in OFET. Dyes and Pigments, 2016, 125, 316-322.	3.7	9
90	Facile method for enhancing conductivity of printed carbon nanotubes electrode via simple rinsing process. Organic Electronics, 2017, 47, 174-180.	2.6	9

#	Article	IF	CITATIONS
91	Ternary blends to achieve well-developed nanoscale morphology in organic bulk heterojunction solar cells. Organic Electronics, 2017, 45, 263-272.	2.6	9
92	Boosting the ambipolar field-effect transistor performance of a DPP-based copolymer via electrohydrodynamic-jet direct writing. Journal of Industrial and Engineering Chemistry, 2019, 78, 172-177.	5.8	9
93	Morphology Driven by Molecular Structure of Thiazoleâ€Based Polymers for Use in Fieldâ€Effect Transistors and Solar Cells. Chemistry - A European Journal, 2019, 25, 649-656.	3.3	9
94	Development of bulk heterojunction morphology by the difference of intermolecular interaction behaviors. Organic Electronics, 2014, 15, 3558-3567.	2.6	8
95	Hybrid flexible ambipolar thin-film transistors based on pentacene and ZnO capable of low-voltage operation. Chinese Journal of Physics, 2016, 54, 471-474.	3.9	8
96	Two TPD-Based Conjugated Polymers: Synthesis and Photovoltaic Applications as Donor Materials. Macromolecular Research, 2018, 26, 1193-1199.	2.4	8
97	Sol–Gel-Processed Organic–Inorganic Hybrid for Flexible Conductive Substrates Based on Gravure-Printed Silver Nanowires and Graphene. Polymers, 2019, 11, 158.	4.5	8
98	Overcoating BaTiO3 dielectrics with a fluorinated polymer to produce highly reliable organic field-effect transistors. Thin Solid Films, 2019, 685, 40-46.	1.8	8
99	Synthesis and characterization of poly(dialkylterthiophene-bithiophene) and poly(dialkylterthiophene-thienothiophene) for organic thin film transistors and organic photovoltaic cells. Synthetic Metals, 2013, 185-186, 159-166.	3.9	7
100	Understanding Marangoni flow-driven solidification of polymer semiconducting films on an aqueous substrate. Journal of Materials Chemistry C, 2020, 8, 10010-10020.	5.5	7
101	Effect of selenophene in naphthalene-diimide-vinylene-based small molecules on n-type organic field-effect transistors. Organic Electronics, 2021, 89, 106032.	2.6	7
102	Doping and Thermoelectric Behaviors of Donor-Acceptor Polymers with Extended Planar Backbone. Macromolecular Research, 2021, 29, 887-894.	2.4	7
103	Synthesis and characterization of an ester-terminated organic semiconductor for ethanol vapor detection. Organic Electronics, 2014, 15, 2277-2284.	2.6	6
104	Ambipolar charge transport of diketopyrrolepyrrole-silole-based copolymers and effect of side chain engineering: Compact model parameter extraction strategy for high-voltage logic applications. Organic Electronics, 2018, 54, 1-8.	2.6	6
105	Electrohydrodynamic-Jet (EHD)-Printed Diketopyrrolopyroole-Based Copolymer for OFETs and Circuit Applications. Polymers, 2019, 11, 1759.	4.5	6
106	Parylene-based polymeric dielectric top-gate organic field-effect transistors exposed to a UV/ozone environment. Organic Electronics, 2020, 87, 105942.	2.6	6
107	Electrohydrodynamic-Jet-Printed Cinnamate-Fluorinated Cross-Linked Polymeric Dielectrics for Flexible and Electrically Stable Operating Organic Thin-Film Transistors and Integrated Devices. ACS Applied Materials & Devices. ACS Appl	8.0	6
108	Structure–Property Relationships: Asymmetric Alkylphenylâ€Substituted Anthracene Molecules for Use in Smallâ€Molecule Solar Cells. ChemSusChem, 2015, 8, 1548-1556.	6.8	5

#	Article	IF	Citations
109	Repurposing compact discs as master molds to fabricate high-performance organic nanowire field-effect transistors. Nanotechnology, 2017, 28, 205304.	2.6	5
110	Low-band gap copolymers based on diketopyrrolopyrrole and dibenzosilole and their application in organic photovoltaics. Dyes and Pigments, 2017, 146, 73-81.	3.7	5
111	Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 2019, 25, 12316-12324.	3.3	5
112	Solution-Processed Flexible Gas Barrier Films for Organic Field-Effect Transistors. Macromolecular Research, 2020, 28, 782-788.	2.4	5
113	Spin Selfâ∈Assembled Clay Nanocomposite Passivation Layers Made from a Photocrosslinkable Poly(vinyl) Tj ETQ Thinâ∈Film Transistors. Chinese Journal of Chemistry, 2016, 34, 1103-1108.	q1 1 0.78 4.9	4314 rgBT /(4
114	Engineering the morphologies and charge transport properties of newly synthesized dibenzochrysene-based small molecules by attaching various side groups. Dyes and Pigments, 2016, 130, 176-182.	3.7	4
115	Morphological studies of small-molecule solar cells: nanostructural engineering via solvent vapor annealing treatments. Journal of Materials Science, 2017, 52, 13173-13182.	3.7	4
116	An oligomer semiconductor with an asymmetric cyclohexylhexyl end group for solution-processed organic field-effect transistors. Materials Chemistry and Physics, 2020, 241, 122398.	4.0	4
117	Enhanced contact properties of spray-coated AgNWs source and drain electrodes in oxide thin-film transistors. Current Applied Physics, 2021, 21, 155-160.	2.4	4
118	Urushiol Gate Dielectrics for Low-Voltage and Hysteresis-Free Organic Thin Film Transistors: Hidden Potential of Natural Polymers. Science of Advanced Materials, 2018, 10, 1700-1705.	0.7	4
119	Molecular Engineering of Printed Semiconducting Blends to Develop Organic Integrated Circuits: Crystallization, Charge Transport, and Device Application Analyses. ACS Applied Materials & Device Application Analyses. ACS Applied Materials & Device Application Analyses. ACS Applied Materials & Device Application Analyses.	8.0	4
120	Naphthalene-Diimide-Based Small Molecule Containing a Thienothiophene Linker for n-Type Organic Field-Effect Transistors. Macromolecular Research, 2022, 30, 470-476.	2.4	4
121	Facile method for the environmentally friendly fabrication of reduced graphene oxide films assisted by a metal substrate and saline solution. RSC Advances, 2013, 3, 14286.	3.6	3
122	Synthesis of thiophene-based polymeric semiconductor with high aromatic density and its application in organic thin-film transistors. Macromolecular Research, 2016, 24, 1077-1083.	2.4	3
123	Photocrosslinkable zinc diacrylate-based gate insulators for reliable operation of organic thin film transistors. Organic Electronics, 2018, 59, 49-55.	2.6	3
124	A Quinacridone-Diphenylquinoxaline-Based Copolymer for Organic Field-Effect Transistors. Polymers, 2019, 11, 563.	4.5	3
125	Highly Reliable Passive RFID-Based Inductor–Capacitor Sensory System Strengthened by Solvatochromism for Fast and Wide-Range Lactate Detection. IEEE Sensors Journal, 2022, 22, 12228-12236.	4.7	3
126	Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing. Applied Surface Science, 2017, 414, 262-269.	6.1	2

#	Article	IF	CITATIONS
127	Side chain engineering in DTBDT-based small molecules for efficient organic photovoltaics. Nanoscale, 2019, 11, 13845-13852.	5.6	2
128	Photo-patterned oxide films produced using polymeric metal acrylate for low-voltage thin-film transistors. Ceramics International, 2021, 47, 26242-26247.	4.8	1
129	Synthesis of Thienopyrrolodione-Based Copolymers and Their Application in Organic Thin-Film Transistors. Journal of Nanoscience and Nanotechnology, 2017, 17, 5662-5668.	0.9	1
130	Effects of Bending Stress on 6,13-Bis(triisopropylsilylethynyl) Pentacene (TIPS-PEN)-Based Organic Thin-Film Transistors. Science of Advanced Materials, 2017, 9, 2234-2239.	0.7	1
131	A Transparent Cyanated Polyimide Gate Dielectrics for High Performance Organic Field-Effect Transistors. Porrime, 2019, 43, 38-45.	0.2	1
132	Organic Field-Effect Transistors and Logic Circuits Using Printed Polymer Dielectrics and MXene Inks. , 2022, , .		1
133	Maintaining effective mobility and enhancing reliability by using a blend system in solution-processed organic field-effect transistors. Chinese Journal of Physics, 2016, 54, 347-351.	3.9	O
134	Aceneâ∈Modified Smallâ∈Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 2019, 25, 12233-12233.	3.3	0
135	Lateral confinement effect on crystallization behavior of a small molecule semiconductor during capillary force lithography for use in OFETs. , 2019, , .		O