## Fabrizio Messina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3415369/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Enhancing carbon dots fluorescence via plasmonic resonance energy transfer. Materials Research<br>Bulletin, 2022, 149, 111746.                                                                   | 2.7 | 6         |
| 2  | Decagram-Scale Synthesis of Multicolor Carbon Nanodots: Self-Tracking Nanoheaters with Inherent<br>and Selective Anticancer Properties. ACS Applied Materials & Interfaces, 2022, 14, 2551-2563. | 4.0 | 15        |
| 3  | Photo-Activated Phosphorescence of Ultrafine ZnS:Mn Quantum Dots: On the Lattice Strain<br>Contribution. Journal of Physical Chemistry C, 2022, 126, 1531-1541.                                  | 1.5 | 1         |
| 4  | Photoinduced charge separation in functional carbon-silver nanohybrids. Physical Chemistry Chemical Physics, 2022, , .                                                                           | 1.3 | 0         |
| 5  | Printable Thermo- and Photo-stable Poly(D,L-lactide)/Carbon Nanodots Nanocomposites via<br>Heterophase Melt-Extrusion Transesterification. Chemical Engineering Journal, 2022, 443, 136525.      | 6.6 | 8         |
| 6  | Photocycle of point defects in highly- and weakly-germanium doped silica revealed by transient absorption measurements with femtosecond tunable pump. Scientific Reports, 2022, 12, .            | 1.6 | 1         |
| 7  | Electron transfer between carbon dots and tetranuclear Dawson-derived sandwich polyanions.<br>Physical Chemistry Chemical Physics, 2022, 24, 17654-17664.                                        | 1.3 | 1         |
| 8  | Disclosing the emissive surface traps in green-emitting carbon nanodots. Carbon, 2021, 173, 454-461.                                                                                             | 5.4 | 16        |
| 9  | Micro-photoluminescence of Carbon Dots Deposited on Twisted Double-Layer Graphene Grown by<br>Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2021, 13, 7324-7333.                | 4.0 | 3         |
| 10 | Transient absorption with a femtosecond tunable excitation pump reveals the emission kinetics of color centers in amorphous silica. Optics Letters, 2021, 46, 1736.                              | 1.7 | 1         |
| 11 | A Comparative Study of Top-Down and Bottom-Up Carbon Nanodots and Their Interaction with Mercury lons. Nanomaterials, 2021, 11, 1265.                                                            | 1.9 | 25        |
| 12 | Fluorescent Carbon Nanodots as Sensors of Toxic Metal Ions and Pesticides. Engineering Proceedings, 2021, 6, .                                                                                   | 0.4 | 1         |
| 13 | Ultrafast Interface Charge Separation in Carbon Nanodot–Nanotube Hybrids. ACS Applied Materials<br>& Interfaces, 2021, 13, 49232-49241.                                                          | 4.0 | 5         |
| 14 | Sensing of Transition Metals by Top-Down Carbon Dots. Applied Sciences (Switzerland), 2021, 11, 10360.                                                                                           | 1.3 | 3         |
| 15 | Synthesis of multi-color luminescent ZnO nanoparticles by ultra-short pulsed laser ablation. Applied<br>Surface Science, 2020, 506, 144954.                                                      | 3.1 | 21        |
| 16 | Simultaneous Photonic and Excitonic Coupling in Spherical Quantum Dot Supercrystals. ACS Nano, 2020, 14, 13806-13815.                                                                            | 7.3 | 22        |
| 17 | Pressure-Dependent Tuning of Photoluminescence and Size Distribution of Carbon Nanodots for Theranostic Anticancer Applications. Materials, 2020, 13, 4899.                                      | 1.3 | 8         |
| 18 | Photocycle of Excitons in Nitrogen-Rich Carbon Nanodots: Implications for Photocatalysis and Photovoltaics. ACS Applied Nano Materials, 2020, 3, 6925-6934.                                      | 2.4 | 11        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Dynamic Modification of Fermi Energy in Single-Layer Graphene by Photoinduced Electron Transfer<br>from Carbon Dots. Nanomaterials, 2020, 10, 528.                                                                                     | 1.9 | 9         |
| 20 | Highly Efficient Electron Transfer in a Carbon Dot–Polyoxometalate Nanohybrid. Journal of Physical<br>Chemistry Letters, 2020, 11, 4379-4384.                                                                                          | 2.1 | 16        |
| 21 | UV photobleaching of carbon nanodots investigated by <i>in situ</i> optical methods. Physical Chemistry Chemical Physics, 2020, 22, 13398-13407.                                                                                       | 1.3 | 21        |
| 22 | Ultrafast spectroscopic investigation on fluorescent carbon nanodots: the role of passivation.<br>Physical Chemistry Chemical Physics, 2019, 21, 16459-16467.                                                                          | 1.3 | 19        |
| 23 | Highly Homogeneous Biotinylated Carbon Nanodots: Red-Emitting Nanoheaters as Theranostic Agents<br>toward Precision Cancer Medicine. ACS Applied Materials & Interfaces, 2019, 11, 19854-19866.                                        | 4.0 | 61        |
| 24 | Effect of Halogen Ions on the Photocycle of Fluorescent Carbon Nanodots. Journal of Carbon<br>Research, 2019, 5, 64.                                                                                                                   | 1.4 | 1         |
| 25 | On the Colloidal Stability of Nitrogen-Rich Carbon Nanodots Aqueous Dispersions. Journal of Carbon<br>Research, 2019, 5, 74.                                                                                                           | 1.4 | 13        |
| 26 | Luminescence Efficiency of Si/SiO 2 Nanoparticles Produced by Laser Ablation. Physica Status Solidi (A)<br>Applications and Materials Science, 2019, 216, 1800565.                                                                     | 0.8 | 3         |
| 27 | Carbon Dots Dispersed on Graphene/SiO 2 /Si: A Morphological Study. Physica Status Solidi (A)<br>Applications and Materials Science, 2019, 216, 1800559.                                                                               | 0.8 | 6         |
| 28 | Photoinduced charge transfer from Carbon Dots to Graphene in solid composite. Thin Solid Films, 2019, 669, 620-624.                                                                                                                    | 0.8 | 6         |
| 29 | β-C <sub>3</sub> N <sub>4</sub> Nanocrystals: Carbon Dots with Extraordinary Morphological,<br>Structural, and Optical Homogeneity. Chemistry of Materials, 2018, 30, 1695-1700.                                                       | 3.2 | 76        |
| 30 | Enhancing the luminescence efficiency of silicon-nanocrystals by interaction with H <sup>+</sup><br>ions. Physical Chemistry Chemical Physics, 2018, 20, 10445-10449.                                                                  | 1.3 | 10        |
| 31 | Carbon Nanodots: A Review—From the Current Understanding of the Fundamental Photophysics to<br>the Full Control of the Optical Response. Journal of Carbon Research, 2018, 4, 67.                                                      | 1.4 | 137       |
| 32 | Tailoring the Emission Color of Carbon Dots through Nitrogen-Induced Changes of Their Crystalline<br>Structure. Journal of Physical Chemistry C, 2018, 122, 19897-19903.                                                               | 1.5 | 54        |
| 33 | Disentangling size effects and spectral inhomogeneity in carbon nanodots by ultrafast dynamical hole-burning. Nanoscale, 2018, 10, 15317-15323.                                                                                        | 2.8 | 33        |
| 34 | One-pot synthesis of graphene quantum dots and simultaneous nanostructured self-assembly<br><i>via</i> a novel microwave-assisted method: impact on triazine removal and efficiency monitoring.<br>RSC Advances, 2018, 8, 29939-29946. | 1.7 | 35        |
| 35 | The interaction of photoexcited carbon nanodots with metal ions disclosed down to the femtosecond scale. Nanoscale, 2017, 9, 11902-11911.                                                                                              | 2.8 | 47        |
| 36 | Design of Carbon Dots Photoluminescence through Organo-Functional Silane Grafting for<br>Solid-State Emitting Devices. Scientific Reports, 2017, 7, 5469.                                                                              | 1.6 | 68        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Different natures of surface electronic transitions of carbon nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 22670-22677.                                                                             | 1.3 | 37        |
| 38 | A collision timing monitor for SuperKEKB. Nuclear Instruments and Methods in Physics Research,<br>Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 869, 95-106.                     | 0.7 | 3         |
| 39 | Characteristic Excitation Wavelength Dependence of Fluorescence Emissions in Carbon "Quantum―<br>Dots. Journal of Physical Chemistry C, 2017, 121, 28180-28186.                                                      | 1.5 | 93        |
| 40 | Nitrogen-doped carbon dots embedded in a SiO2 monolith for solid-state fluorescent detection of<br>Cu2+ ions. Journal of Nanoparticle Research, 2017, 19, 1.                                                         | 0.8 | 17        |
| 41 | Ge-doped silica nanoparticles: production and characterisation. Optical Materials Express, 2016, 6, 2213.                                                                                                            | 1.6 | 4         |
| 42 | Dual Luminescence, Interligand Decay, and Nonradiative Electronic Relaxation of Cyclometalated<br>Iridium Complexes in Solution. Journal of Physical Chemistry C, 2016, 120, 16459-16469.                            | 1.5 | 42        |
| 43 | Controlling the oxidation processes of Zn nanoparticles produced by pulsed laser ablation in aqueous solution. Journal of Applied Physics, 2016, 120, .                                                              | 1.1 | 7         |
| 44 | Self-limiting and complete oxidation of silicon nanostructures produced by laser ablation in water.<br>Journal of Applied Physics, 2016, 120, .                                                                      | 1.1 | 13        |
| 45 | Luminescence mechanisms of defective ZnO nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 16237-16244.                                                                                                  | 1.3 | 89        |
| 46 | Fluorescent nitrogen-rich carbon nanodots with an unexpected<br>β-C <sub>3</sub> N <sub>4</sub> nanocrystalline structure. Journal of Materials Chemistry C, 2016, 4,<br>2598-2605.                                  | 2.7 | 53        |
| 47 | Solvatochromism Unravels the Emission Mechanism of Carbon Nanodots. Journal of Physical<br>Chemistry Letters, 2016, 7, 3419-3423.                                                                                    | 2.1 | 179       |
| 48 | Effect of thermal annealing on the luminescence of defective ZnO nanoparticles synthesized by pulsed<br>laser ablation in water. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 890-894.  | 0.8 | 4         |
| 49 | Photoluminescence of Carbon Dots Embedded in a SiO2 Matrix. Materials Today: Proceedings, 2016, 3, S258-S265.                                                                                                        | 0.9 | 12        |
| 50 | Observation of Ligand-Centred Fluorescence and Intramolecular Relaxation at Sub-Vibrational Time<br>Scales. , 2016, , .                                                                                              |     | 0         |
| 51 | Oxidation of Zn nanoparticles probed by online optical spectroscopy during nanosecond pulsed laser ablation of a Zn plate in H2O. Applied Physics Letters, 2015, 107, .                                              | 1.5 | 16        |
| 52 | Ligand-Centred Fluorescence and Electronic Relaxation Cascade at Vibrational Time Scales in<br>Transition-Metal Complexes. Journal of Physical Chemistry Letters, 2015, 6, 4475-4480.                                | 2.1 | 29        |
| 53 | Effects of Pressure, Thermal Treatment, and O <sub>2</sub> Loading in MCM41, MSU-H, and MSU-F<br>Mesoporous Silica Systems Probed by Raman Spectroscopy. Journal of Physical Chemistry C, 2015, 119,<br>27434-27441. | 1.5 | 5         |
| 54 | Aging of MCM41, MSU-H and MSU-F mesoporous systems investigated through the Raman spectroscopy.                                                                                                                      |     | 0         |

, 2014, , .

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Luminescent silicon nanocrystals produced by near-infrared nanosecond pulsed laser ablation in water. Applied Surface Science, 2014, 302, 62-65.                                                             | 3.1 | 37        |
| 56 | Real-time observation of the charge transfer to solvent dynamics. Nature Communications, 2013, 4, 2119.                                                                                                      | 5.8 | 62        |
| 57 | Importance of Spin-Orbit Interaction for the Electron Spin Relaxation in Organic Semiconductors.<br>Physical Review Letters, 2013, 110, 216602.                                                              | 2.9 | 62        |
| 58 | Ultrafast Solventâ€Assisted Electronic Level Crossing in 1â€Naphthol. Angewandte Chemie - International<br>Edition, 2013, 52, 6871-6875.                                                                     | 7.2 | 24        |
| 59 | Ultrafast Relaxation Dynamics of Osmium–Polypyridine Complexes in Solution. Journal of Physical<br>Chemistry C, 2013, 117, 15958-15966.                                                                      | 1.5 | 35        |
| 60 | The Role of Site-Specific Hydrogen Bonding Interactions in the Solvation Dynamics of <i>N</i> -Acetyltryptophanamide. Journal of Physical Chemistry B, 2012, 116, 10730-10738.                               | 1.2 | 10        |
| 61 | Polychromatic femtosecond fluorescence studies of metal–polypyridine complexes in solution.<br>Chemical Physics, 2012, 393, 51-57.                                                                           | 0.9 | 84        |
| 62 | Unraveling exciton dynamics in amorphous silicon dioxide: Interpretation of the optical features from 8 to 11 eV. Physical Review B, 2011, 83, .                                                             | 1.1 | 53        |
| 63 | Effects induced by 4.7eV UV laser irradiation on pure silica core multimode optical fibers investigated by in situ optical absorption measurements. Journal of Non-Crystalline Solids, 2011, 357, 1985-1988. | 1.5 | 3         |
| 64 | Irradiation induced germanium lone pair centers in Ge-doped sol–gel SiO2: Luminescence lifetime and<br>temperature dependence. Journal of Luminescence, 2010, 130, 1866-1871.                                | 1.5 | 2         |
| 65 | Generation and excitation of point defects in silica by synchrotron radiation above the absorption edge. Physical Review B, 2010, 81, .                                                                      | 1.1 | 29        |
| 66 | Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms. Journal of Applied Physics, 2010, 108, .                                               | 1.1 | 20        |
| 67 | Evidence of Delocalized Excitons in Amorphous Solids. Physical Review Letters, 2010, 105, 116401.                                                                                                            | 2.9 | 31        |
| 68 | Optical properties of phosphorus-related point defects in silica fiber preforms. Physical Review B, 2009, 80, .                                                                                              | 1.1 | 27        |
| 69 | Inhomogeneous width of oxygen-deficient centers induced by electron irradiation of silica. Physical<br>Review B, 2009, 79, .                                                                                 | 1.1 | 7         |
| 70 | Photoluminescence spectral dispersion as a probe of structural inhomogeneity in silica. Journal of<br>Physics Condensed Matter, 2009, 21, 115803.                                                            | 0.7 | 1         |
| 71 | Room Temperature Instability of E′γ Centers Induced by γ Irradiation in Amorphous SiO2. Journal of<br>Physical Chemistry A, 2009, 113, 1026-1032.                                                            | 1.1 | 10        |
| 72 | Temperature dependence of the generation and decay of E′ centers induced in silica by 4.7eV laser radiation. Journal of Non-Crystalline Solids, 2009, 355, 1038-1041.                                        | 1.5 | 4         |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | In situ observation of β-ray induced UV optical absorption in a-SiO2: Radiation darkening and room temperature recovery. Journal of Non-Crystalline Solids, 2009, 355, 1042-1045.                                          | 1.5 | 3         |
| 74 | 10 keV X-ray irradiation effects on phosphorus-doped fibers and preforms: Electron spin resonance and optical studies. , 2009, , .                                                                                         |     | 2         |
| 75 | Homogeneous and inhomogeneous contributions to the luminescence linewidth of point defects in<br>amorphous solids: Quantitative assessment based on time-resolved emission spectroscopy. Physical<br>Review B, 2008, 78, . | 1.1 | 28        |
| 76 | Isoelectronic Series of Oxygen Deficient Centers in Silica: Experimental Estimation of Homogeneous and Inhomogeneous Spectral Widths. Journal of Physical Chemistry A, 2008, 112, 12104-12108.                             | 1.1 | 5         |
| 77 | Generation of defects in amorphous SiO <sub>2</sub> assisted by two-step absorption on impurity sites. Journal of Physics Condensed Matter, 2008, 20, 275210.                                                              | 0.7 | 18        |
| 78 | Stability of E′ centers induced by 4.7eV laser radiation in SiO2. Journal of Non-Crystalline Solids, 2007, 353, 522-525.                                                                                                   | 1.5 | 7         |
| 79 | Role of diffusing molecular hydrogen on relaxation processes in Ge-doped glass. Journal of<br>Non-Crystalline Solids, 2007, 353, 447-450.                                                                                  | 1.5 | 3         |
| 80 | Optical properties of Ge-oxygen deficient centers embedded in silica films. Journal of Non-Crystalline<br>Solids, 2007, 353, 670-673.                                                                                      | 1.5 | 3         |
| 81 | Character of the Reaction between Molecular Hydrogen and a Silicon Dangling Bond in Amorphous<br>SiO2. Journal of Physical Chemistry C, 2007, 111, 6663-6667.                                                              | 1.5 | 19        |
| 82 | Structural inhomogeneity of Ge-doped amorphous SiO2 probed by photoluminescence lifetime<br>measurements under synchrotron radiation. Physica Status Solidi C: Current Topics in Solid State<br>Physics, 2007, 4, 934-937. | 0.8 | 2         |
| 83 | Optical absorption induced by UV laser radiation in Ge-doped amorphous silica probed by in situ spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1143-1146.                          | 0.8 | 1         |
| 84 | Ultraviolet-induced paramagnetic centers and absorption changes in singlemode Ge-doped optical fibers. Optics Express, 2006, 14, 5885.                                                                                     | 1.7 | 9         |
| 85 | Photochemical generation of E′ centres from Si–H in amorphous SiO2under pulsed ultraviolet laser radiation. Journal of Physics Condensed Matter, 2006, 18, 9967-9973.                                                      | 0.7 | 16        |
| 86 | Influence of hydrogen on paramagnetic defects induced by UV laser exposure in natural silica. Physica<br>Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 616-619.                                         | 0.8 | 5         |
| 87 | In situobservation of the generation and annealing kinetics of E ′ centres induced in amorphous SiO2by 4.7 eV laser irradiation. Journal of Physics Condensed Matter, 2005, 17, 3837-3842.                                 | 0.7 | 17        |
| 88 | Hydrogen-related conversion processes of Ge-related point defects in silica triggered by ultraviolet<br>laser irradiation. Physical Review B, 2005, 72, .                                                                  | 1.1 | 14        |
| 89 | H(II) Centers in natural silica under repeated UV laser irradiations. Journal of Non-Crystalline Solids, 2005, 351, 1770-1773.                                                                                             | 1.5 | 3         |
| 90 | Nd:YAG laser induced E′ centers probed by in situ absorption measurements. Journal of Non-Crystalline Solids, 2005, 351, 1780-1783.                                                                                        | 1.5 | 8         |

| #  | Article                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Bleaching of optical activity induced by UV laser exposure in natural silica. Journal of Non-Crystalline<br>Solids, 2004, 345-346, 433-437. | 1.5 | 7         |
| 92 | Growth of H(II) centers in natural silica after UV laser exposure. Journal of Non-Crystalline Solids, 2003, 322, 90-94.                     | 1.5 | 9         |
| 93 | UV-photoinduced defects in Ge-doped optical fibers. , 0, , .                                                                                |     | Ο         |