Nicholas X. Fang

List of Publications by Citations

Source: https://exaly.com/author-pdf/341493/nicholas-x-fang-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21,063 64 235 144 h-index g-index citations papers 8.6 25,069 275 7.05 ext. citations L-index avg, IF ext. papers

#	Paper	IF	Citations
235	Sub-diffraction-limited optical imaging with a silver superlens. <i>Science</i> , 2005 , 308, 534-7	33.3	2990
234	Ultrasonic metamaterials with negative modulus. <i>Nature Materials</i> , 2006 , 5, 452-6	27	1288
233	Terahertz magnetic response from artificial materials. <i>Science</i> , 2004 , 303, 1494-6	33.3	1170
232	Ultralight, ultrastiff mechanical metamaterials. <i>Science</i> , 2014 , 344, 1373-7	33.3	1132
231	Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. <i>Nano Letters</i> , 2012 , 12, 1443-7	11.5	712
230	Polaritons in layered two-dimensional materials. <i>Nature Materials</i> , 2017 , 16, 182-194	27	665
229	Broadband acoustic cloak for ultrasound waves. <i>Physical Review Letters</i> , 2011 , 106, 024301	7.4	558
228	Projection micro-stereolithography using digital micro-mirror dynamic mask. <i>Sensors and Actuators A: Physical</i> , 2005 , 121, 113-120	3.9	533
227	Multimaterial 4D Printing with Tailorable Shape Memory Polymers. <i>Scientific Reports</i> , 2016 , 6, 31110	4.9	530
226	Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. <i>Nature Communications</i> , 2017 , 8, 14230	17.4	519
225	Plasmonic Nanolithography. <i>Nano Letters</i> , 2004 , 4, 1085-1088	11.5	461
224	Focusing ultrasound with an acoustic metamaterial network. <i>Physical Review Letters</i> , 2009 , 102, 194301	7.4	415
223	Multiscale metallic metamaterials. <i>Nature Materials</i> , 2016 , 15, 1100-6	27	411
222	Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. <i>Advanced Materials</i> , 2017 , 29, 1606000	24	347
221	Far-field optical superlens. <i>Nano Letters</i> , 2007 , 7, 403-8	11.5	300
220	Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. <i>Nano Letters</i> , 2012 , 12, 796-801	11.5	283
219	Imaging properties of a metamaterial superlens. <i>Applied Physics Letters</i> , 2003 , 82, 161-163	3.4	237

(2011-2019)

218	Mechanical Metamaterials and Their Engineering Applications. <i>Advanced Engineering Materials</i> , 2019 , 21, 1800864	3.5	234	
217	Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion. <i>Physical Review Letters</i> , 2016 , 117, 175901	7.4	225	
216	Ice Templated Free-Standing Hierarchically WS2/CNT-rGO Aerogel for High-Performance Rechargeable Lithium and Sodium Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1601057	21.8	223	
215	Ultrasmooth silver thin films deposited with a germanium nucleation layer. <i>Nano Letters</i> , 2009 , 9, 178-8	3 2 11.5	222	
214	A thin film broadband absorber based on multi-sized nanoantennas. <i>Applied Physics Letters</i> , 2011 , 99, 253101	3.4	220	
213	Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System. <i>Nano Letters</i> , 2015 , 15, 3172-80	11.5	194	
212	Large positive and negative lateral optical beam displacements due to surface plasmon resonance. <i>Applied Physics Letters</i> , 2004 , 85, 372-374	3.4	192	
211	Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays. <i>Nano Letters</i> , 2010 , 10, 1582-8	11.5	181	
210	Surface resonant states and superlensing in acoustic metamaterials. <i>Physical Review B</i> , 2007 , 75,	3.3	175	
209	Terahertz plasmonic high pass filter. <i>Applied Physics Letters</i> , 2003 , 83, 201-203	3.4	167	
208	High-Performance Single-Crystalline Perovskite Thin-Film Photodetector. <i>Advanced Materials</i> , 2018 , 30, 1704333	24	166	
207	Reprocessable thermosets for sustainable three-dimensional printing. <i>Nature Communications</i> , 2018 , 9, 1831	17.4	164	
206	First jump of microgel; actuation speed enhancement by elastic instability. Soft Matter, 2010, 6, 4342	3.6	162	
205	The metastability of an electrochemically controlled nanoscale machine on gold surfaces. <i>ChemPhysChem</i> , 2004 , 5, 111-6	3.2	161	
204	Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. <i>Review of Scientific Instruments</i> , 2012 , 83, 125001	1.7	159	
203	Fast-Response, Stiffness-Tunable Soft Actuator by Hybrid Multimaterial 3D Printing. <i>Advanced Functional Materials</i> , 2019 , 29, 1806698	15.6	154	
202	Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells. <i>Nano Letters</i> , 2013 , 13, 637-42	11.5	147	
201	Nonlinear optical response from arrays of Au bowtie nanoantennas. <i>Nano Letters</i> , 2011 , 11, 61-5	11.5	146	

200	A micro methanol fuel cell operating at near room temperature. Applied Physics Letters, 2003, 83, 4056	5-40458	144
199	Rapid growth of evanescent wave by a silver superlens. <i>Applied Physics Letters</i> , 2003 , 83, 5184-5186	3.4	140
198	One-step volumetric additive manufacturing of complex polymer structures. <i>Science Advances</i> , 2017 , 3, eaao5496	14.3	134
197	Nano-kirigami with giant optical chirality. Science Advances, 2018, 4, eaat4436	14.3	131
196	Broadband Light Management with Thermochromic Hydrogel Microparticles for Smart Windows. <i>Joule</i> , 2019 , 3, 290-302	27.8	129
195	Harnessing Deformation to Switch On and Off the Propagation of Sound. <i>Advanced Materials</i> , 2016 , 28, 1631-5	24	110
194	A reconfigurable plasmofluidic lens. <i>Nature Communications</i> , 2013 , 4, 2305	17.4	105
193	Thermal conductivity of silicon nanowire arrays with controlled roughness. <i>Journal of Applied Physics</i> , 2012 , 112, 114306	2.5	105
192	Regenerating evanescent waves from a silver superlens. <i>Optics Express</i> , 2003 , 11, 682-7	3.3	105
191	Breaking the barriers: advances in acoustic functional materials. <i>National Science Review</i> , 2018 , 5, 159-	182 0.8	102
191	Breaking the barriers: advances in acoustic functional materials. <i>National Science Review</i> , 2018 , 5, 159-Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. <i>Advanced Materials</i> , 2014 , 26, 8041-5	1820.8 24	102 98
	Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. Advanced		98
190	Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. <i>Advanced Materials</i> , 2014 , 26, 8041-5 Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence	24	98
190 189	Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. <i>Advanced Materials</i> , 2014 , 26, 8041-5 Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. <i>ACS Nano</i> , 2009 , 3, 2965-74 Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. <i>Journal</i>	24 16.7	98 98
190 189 188	Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. <i>Advanced Materials</i> , 2014 , 26, 8041-5 Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. <i>ACS Nano</i> , 2009 , 3, 2965-74 Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3246-3253 Near-field two-photon nanolithography using an apertureless optical probe. <i>Applied Physics Letters</i> ,	24 16.7 7.3	98 98 96
190 189 188	Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. <i>Advanced Materials</i> , 2014 , 26, 8041-5 Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. <i>ACS Nano</i> , 2009 , 3, 2965-74 Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3246-3253 Near-field two-photon nanolithography using an apertureless optical probe. <i>Applied Physics Letters</i> , 2002 , 81, 3663-3665	24 16.7 7·3 3·4	98 98 96 96
190 189 188 187	Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. <i>Advanced Materials</i> , 2014 , 26, 8041-5 Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. <i>ACS Nano</i> , 2009 , 3, 2965-74 Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3246-3253 Near-field two-photon nanolithography using an apertureless optical probe. <i>Applied Physics Letters</i> , 2002 , 81, 3663-3665 Magnetoactive Acoustic Metamaterials. <i>Advanced Materials</i> , 2018 , 30, e1706348	24 16.7 7.3 3.4 24	98 98 96 96

(2016-2005)

182	Realization of optical superlens imaging below the diffraction limit. New Journal of Physics, 2005, 7, 25	5-2.55	78
181	Projection micro stereolithography based 3D printing and its applications. <i>International Journal of Extreme Manufacturing</i> , 2020 , 2, 022004	7.9	76
180	A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators. <i>Sensors and Actuators A: Physical</i> , 2018 , 273, 285-292	3.9	76
179	Fe3O4 quantum dot decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9122-9131	13	74
178	Microarchitected Stretching-Dominated Mechanical Metamaterials with Minimal Surface Topologies. <i>Advanced Engineering Materials</i> , 2018 , 20, 1800029	3.5	74
177	Versatile three-dimensional virus-based template for dye-sensitized solar cells with improved electron transport and light harvesting. <i>ACS Nano</i> , 2013 , 7, 6563-74	16.7	7 ²
176	Numerical study of a near-zero-index acoustic metamaterial. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2012 , 376, 2834-2837	2.3	70
175	A smooth optical superlens. <i>Applied Physics Letters</i> , 2010 , 96, 043102	3.4	70
174	3D printing of highly stretchable hydrogel with diverse UV curable polymers. <i>Science Advances</i> , 2021 , 7,	14.3	70
173	Topological magnetoplasmon. <i>Nature Communications</i> , 2016 , 7, 13486	17.4	68
173 172	Topological magnetoplasmon. <i>Nature Communications</i> , 2016 , 7, 13486 Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. <i>Additive Manufacturing</i> , 2019 , 27, 606-615	17.4 6.1	68 6 ₄
	Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic		64
172	Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. <i>Additive Manufacturing</i> , 2019 , 27, 606-615	6.1	64
172 171	Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. <i>Additive Manufacturing</i> , 2019 , 27, 606-615 Electrochemical nanoimprinting with solid-state superionic stamps. <i>Nano Letters</i> , 2007 , 7, 446-51 High-Efficiency High-Resolution Multimaterial Fabrication for Digital Light Processing-Based	6.1	64
172 171 170	Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. <i>Additive Manufacturing</i> , 2019 , 27, 606-615 Electrochemical nanoimprinting with solid-state superionic stamps. <i>Nano Letters</i> , 2007 , 7, 446-51 High-Efficiency High-Resolution Multimaterial Fabrication for Digital Light Processing-Based Three-Dimensional Printing. <i>3D Printing and Additive Manufacturing</i> , 2018 , 5, 185-193 Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak.	6.1	646362
172 171 170	Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. <i>Additive Manufacturing</i> , 2019 , 27, 606-615 Electrochemical nanoimprinting with solid-state superionic stamps. <i>Nano Letters</i> , 2007 , 7, 446-51 High-Efficiency High-Resolution Multimaterial Fabrication for Digital Light Processing-Based Three-Dimensional Printing. <i>3D Printing and Additive Manufacturing</i> , 2018 , 5, 185-193 Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 084007 Liquid-Crystal-Elastomer-Based Dissipative Structures by Digital Light Processing 3D Printing.	6.1 11.5 4 1.7	64636260
172 171 170 169 168	Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. <i>Additive Manufacturing</i> , 2019 , 27, 606-615 Electrochemical nanoimprinting with solid-state superionic stamps. <i>Nano Letters</i> , 2007 , 7, 446-51 High-Efficiency High-Resolution Multimaterial Fabrication for Digital Light Processing-Based Three-Dimensional Printing. <i>3D Printing and Additive Manufacturing</i> , 2018 , 5, 185-193 Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 084007 Liquid-Crystal-Elastomer-Based Dissipative Structures by Digital Light Processing 3D Printing. <i>Advanced Materials</i> , 2020 , 32, e2000797	6.1 11.5 4 1.7	6463626057

164	Miniature Pneumatic Actuators for Soft Robots by High-Resolution Multimaterial 3D Printing. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900427	6.8	52
163	Functional Molecularly Imprinted Polymer Microstructures Fabricated Using Microstereolithography. <i>Advanced Materials</i> , 2003 , 15, 1541-1544	24	52
162	Diffusion-limited photopolymerization in scanning micro-stereolithography. <i>Applied Physics A: Materials Science and Processing</i> , 2004 , 79, 1839-1842	2.6	51
161	Engineered 3D-printed artificial axons. <i>Scientific Reports</i> , 2018 , 8, 478	4.9	50
160	Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching. <i>Nanotechnology</i> , 2013 , 24, 225305	3.4	50
159	Prescribed pattern transformation in swelling gel tubes by elastic instability. <i>Physical Review Letters</i> , 2012 , 108, 214304	7.4	48
158	Stiction problems in releasing of 3D microstructures and its solution. <i>Sensors and Actuators A: Physical</i> , 2006 , 128, 109-115	3.9	45
157	Elastic wave propagation in finitely deformed layered materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2017 , 98, 390-410	5	43
156	Promoting polysulfide conversion by catalytic ternary Fe3O4/carbon/graphene composites with ordered microchannels for ultrahigh-rate lithium ulfur batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25078-25087	13	43
155	Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing. <i>Additive Manufacturing</i> , 2018 , 24, 627-638	6.1	43
154	Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. <i>Nature Communications</i> , 2021 , 12, 112	17.4	42
153	Sub-100 nm lithography using ultrashort wavelength of surface plasmons. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2004 , 22, 3475		41
152	Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. <i>Nanophotonics</i> , 2020 , 9, 855-863	6.3	38
151	Terahertz plasmonics in ferroelectric-gated graphene. <i>Applied Physics Letters</i> , 2013 , 102, 201118	3.4	38
150	Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing. <i>Advanced Materials</i> , 2021 , 33, e2101298	24	38
149	Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching. <i>Review of Scientific Instruments</i> , 2003 , 74, 3679-3683	1.7	37
148	Quantum-Spillover-Enhanced Surface-Plasmonic Absorption at the Interface of Silver and High-Index Dielectrics. <i>Physical Review Letters</i> , 2015 , 115, 193901	7.4	34
147	Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip. <i>Scientific Reports</i> , 2013 , 3, 3095	4.9	34

(2016-2015)

146	Extraordinary focusing of sound above a soda can array without time reversal. <i>New Journal of Physics</i> , 2015 , 17, 042001	2.9	33
145	Anisotropically Fatigue-Resistant Hydrogels. <i>Advanced Materials</i> , 2021 , 33, e2102011	24	33
144	Ultrafast Three-Dimensional Printing of Optically Smooth Microlens Arrays by Oscillation-Assisted Digital Light Processing. <i>ACS Applied Materials & Digital Light Processing</i> . <i>ACS Applied Materials & Digital Light Processing</i> . <i>ACS Applied Materials & Digital Light Processing</i> .	9.5	32
143	3D Printed Compressible Quasi-Solid-State Nickel-Iron Battery. <i>ACS Nano</i> , 2020 , 14, 9675-9686	16.7	32
142	Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers. <i>Advanced Optical Materials</i> , 2016 , 4, 1255-1264	8.1	32
141	Employing the biology of successful fracture repair to heal critical size bone defects. <i>Current Topics in Microbiology and Immunology</i> , 2013 , 367, 113-32	3.3	31
140	Polymeric micromechanical components with tunable stiffness. <i>Applied Physics Letters</i> , 2001 , 79, 1700-1	1 30 42	29
139	3D microfabricated bioreactor with capillaries. <i>Biomedical Microdevices</i> , 2009 , 11, 1309-15	3.7	28
138	Bioinspired Ultra-Low Adhesive Energy Interface for Continuous 3D Printing: Reducing Curing Induced Adhesion. <i>Research</i> , 2018 , 2018, 4795604	7.8	28
137	Bifunctional acoustic metamaterial lens designed with coordinate transformation. <i>Applied Physics Letters</i> , 2017 , 110, 113503	3.4	27
136	Molding acoustic, electromagnetic and water waves with a single cloak. Scientific Reports, 2015, 5, 1067	8 4.9	27
135	Near-Perfect Ultrathin Nanocomposite Absorber with Self-Formed Topping Plasmonic Nanoparticles. <i>Advanced Optical Materials</i> , 2017 , 5, 1700222	8.1	27
134	Manufacturing at Nanoscale: Top-Down, Bottom-up and System Engineering. <i>Journal of Nanoparticle Research</i> , 2004 , 6, 125-130	2.3	25
133	Effective dielectric constants and spectral density analysis of plasmonic nanocomposites. <i>Journal of Applied Physics</i> , 2016 , 120, 163103	2.5	25
132	Far-field acoustic subwavelength imaging and edge detection based on spatial filtering and wave vector conversion. <i>Nature Communications</i> , 2019 , 10, 204	17.4	21
131	Polytope Sector-Based Synthesis and Analysis of Microstructural Architectures With Tunable Thermal Conductivity and Expansion. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2016 , 138,	3	20
130	Continuous 3D printing from one single droplet. <i>Nature Communications</i> , 2020 , 11, 4685	17.4	20
129	A broadband polygonal cloak for acoustic wave designed with linear coordinate transformation. Journal of the Acoustical Society of America, 2016 , 140, 95	2.2	20

128	Direct metal nano-imprinting using an embossed solid electrolyte stamp. <i>Nanotechnology</i> , 2011 , 22, 155	3042	19
127	Electromechanically reconfigurable optical nano-kirigami. <i>Nature Communications</i> , 2021 , 12, 1299	17.4	19
126	Skin-electrode iontronic interface for mechanosensing. <i>Nature Communications</i> , 2021 , 12, 4731	17.4	19
125	Multiband plasmonic absorber based on transverse phase resonances. <i>Optics Express</i> , 2012 , 20, 17552-9	3.3	18
124	Solvent-driven polymeric micro beam device. <i>Journal of Micromechanics and Microengineering</i> , 2010 , 20, 085030	2	18
123	Invited Article: Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation. <i>APL Photonics</i> , 2018 , 3, 100803	5.2	18
122	Solid-state electrochemical nanoimprinting of copper. <i>Journal of Vacuum Science & Technology B</i> , 2007 , 25, 2419		17
121	Micro 3D printing using a digital projector and its application in the study of soft materials mechanics. <i>Journal of Visualized Experiments</i> , 2012 , e4457	1.6	16
120	Formation of fine near-field scanning optical microscopy tips. Part II. By laser-heated pulling and bending. <i>Review of Scientific Instruments</i> , 2003 , 74, 3684-3688	1.7	16
119	Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers. <i>ACS Applied Materials & District Mater</i>	9.5	16
118	Time-domain imaging of gigahertz surface waves on an acoustic metamaterial. <i>New Journal of Physics</i> , 2018 , 20, 013026	2.9	15
117	Metagel with Broadband Tunable Acoustic Properties Over Air Water Bolid Ranges. <i>Advanced Functional Materials</i> , 2019 , 29, 1903699	15.6	15
116	Electron-photon scattering mediated by localized plasmons: A quantitative analysis by eigen-response theory. <i>Physical Review B</i> , 2014 , 89,	3.3	15
115	Fractal-Based Stretchable Circuits via Electric-Field-Driven Microscale 3D Printing for Localized Heating of Shape Memory Polymers in 4D Printing. <i>ACS Applied Materials & Description</i> 13, 41414-41423	9.5	15
114	Three-Dimensional Soundproof Acoustic Metacage. <i>Physical Review Letters</i> , 2021 , 127, 084301	7.4	14
113	Nonlocal description of sound propagation through an array of Helmholtz resonators. <i>Comptes Rendus - Mecanique</i> , 2015 , 343, 656-669	2.1	13
112	Optical torque from enhanced scattering by multipolar plasmonic resonance. <i>Nanophotonics</i> , 2014 , 3, 343-350	6.3	13
111	Ultrafast fluorescent decay induced by metal-mediated dipole-dipole interaction in two-dimensional molecular aggregates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 10017-10022	11.5	13

(2008-2009)

110	Fully three-dimensional microfabrication with a grayscale polymeric self-sacrificial structure. Journal of Micromechanics and Microengineering, 2009 , 19, 115029	2	13	
109	Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 80, 1315-1325	2.6	13	
108	On the interplay between physical and content priors in deep learning for computational imaging. <i>Optics Express</i> , 2020 , 28, 24152-24170	3.3	13	
107	Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study. <i>Additive Manufacturing</i> , 2020 , 36, 101564	6.1	13	
106	Chemomechanics of dual-stage reprocessable thermosets. <i>Journal of the Mechanics and Physics of Solids</i> , 2019 , 126, 168-186	5	13	
105	Design of 3D Printed Programmable Horseshoe Lattice Structures Based on a Phase-Evolution Model. <i>ACS Applied Materials & Design</i> , Interfaces, 2020 , 12, 22146-22156	9.5	12	
104	Foreshadowing elastic instabilities by negative group velocity in soft composites. <i>Applied Physics Letters</i> , 2018 , 113, 031901	3.4	12	
103	Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque. <i>Optics Express</i> , 2017 , 25, 6757-6766	3.3	12	
102	Zeeman splitting of photonic angular momentum states in a gyromagnetic cylinder. <i>Physical Review B</i> , 2011 , 84,	3.3	12	
101	Adhesion force of polymeric three-dimensional microstructures fabricated by microstereolithography. <i>Applied Physics Letters</i> , 2002 , 81, 3963-3965	3.4	12	
100	Influence of treating parameters on thermomechanical properties of recycled epoxy-acid vitrimers. <i>Soft Matter</i> , 2020 , 16, 1668-1677	3.6	12	
99	Constructing Multifunctional Virus-Templated Nanoporous Composites for Thin Film Solar Cells: Contributions of Morphology and Optics to Photocurrent Generation. <i>Journal of Physical Chemistry C</i> , 2015 , 150610114441003	3.8	11	
98	Excitation and imaging of resonant optical modes of Au triangular nanoantennas using cathodoluminescence spectroscopy. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2010 , 28, C6C21-C6C25	1.3	11	
97	SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays. <i>Journal of Raman Spectroscopy</i> , 2010 , 41, 1124-1130	2.3	11	
96	Additive Manufacturing of Functional Microarchitected Reactors for Energy, Environmental, and Biological Applications. <i>International Journal of Precision Engineering and Manufacturing - Green Technology</i> , 2021 , 8, 303-326	3.8	11	
95	Influences of processing conditions on mechanical properties of recycled epoxy-anhydride vitrimers. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 49246	2.9	10	
94	Xenopus laevis as a novel model to study long bone critical-size defect repair by growth factor-mediated regeneration. <i>Tissue Engineering - Part A</i> , 2011 , 17, 691-701	3.9	10	
93	New Frontiers of Metamaterials: Design and Fabrication. <i>MRS Bulletin</i> , 2008 , 33, 915-920	3.2	10	

92	Projection lithography patterned high-resolution quantum dots/thiol-ene photo-polymer pixels for color down conversion. <i>Optics Express</i> , 2019 , 27, 30864-30874	3.3	10
91	Exciting multiple plasmonic resonances by a double-layered metallic nanostructure. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2011 , 28, 2827	1.7	9
90	Ultradense gold nanostructures fabricated using hydrogen silsesquioxane resist and applications for surface-enhanced Raman spectroscopy. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 2640		9
89	Optimal Nanoparticle Forces, Torques, and Illumination Fields. ACS Photonics, 2019, 6, 395-402	6.3	9
88	Physical modeling and validation of porpoises' directional emission via hybrid metamaterials. <i>National Science Review</i> , 2019 , 6, 921-928	10.8	8
87	Nonlocal dynamics of dissipative phononic fluids. <i>Physical Review B</i> , 2017 , 95,	3.3	8
86	Transformation optics scheme for two-dimensional materials. <i>Optics Letters</i> , 2014 , 39, 2113-6	3	8
85	Solid-state superionic stamping with silver iodide-silver metaphosphate glass. <i>Nanotechnology</i> , 2011 , 22, 425301	3.4	8
84	Voxel design of additively manufactured digital material with customized thermomechanical properties. <i>Materials and Design</i> , 2021 , 197, 109205	8.1	8
83	The nonequilibrium behaviors of covalent adaptable network polymers during the topology transition. <i>Soft Matter</i> , 2021 , 17, 2104-2119	3.6	8
82	Computational modelling of processEtructurePropertyPerformance relationships in metal additive manufacturing: a review. <i>International Materials Reviews</i> ,1-46	16.1	8
81	Broadband light absorption by silver nanoparticle decorated silica nanospheres. <i>RSC Advances</i> , 2016 , 6, 107951-107959	3.7	7
80	Topological kink plasmons on magnetic-domain boundaries. <i>Nature Communications</i> , 2019 , 10, 4565	17.4	7
79	Photon emission rate engineering using graphene nanodisc cavities. <i>Optics Express</i> , 2014 , 22, 6400-15	3.3	7
78	Wide-Angle Broadband Nonreflecting Acoustic Metamaterial Fence. <i>Physical Review Applied</i> , 2020 , 13,	4.3	6
77	Muscle-fiber array inspired, multiple-mode, pneumatic artificial muscles through planar design and one-step rolling fabrication. <i>National Science Review</i> , 2021 , 8, nwab048	10.8	6
76	Photosynthesis-assisted remodeling of three-dimensional printed structures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	6
75	Switching Acoustic Propagation via Underwater Metasurface. <i>Physical Review Applied</i> , 2020 , 13,	4.3	5

(2020-2019)

Electromagnetic and Chemical Enhancements of Surface-Enhanced Raman Scattering Spectra from Cu2O Hexagonal Nanoplates. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900534	4.6	5	
Plasmonic nanofluids enhanced solar thermal transfer liquid 2017 ,		5	
Mediated Growth of Zinc Chalcogen Shells on Gold Nanoparticles by Free-Base Amino Acids. <i>Chemistry of Materials</i> , 2017 , 29, 6993-7001	9.6	5	
Comment on Bubmicron imaging with a planar silver lens[[Appl. Phys. Lett. 84, 4403 (2004)]. <i>Applied Physics Letters</i> , 2005 , 86, 126101	3.4	5	
Shaping soft materials via digital light processing-based 3D printing: A review. <i>Forces in Mechanics</i> , 2022 , 6, 100074	1.5	5	
Grayscale stencil lithography for patterning multispectral color filters. <i>Optica</i> , 2020 , 7, 1154	8.6	5	
Bioinspired metagel with broadband tunable impedance matching. Science Advances, 2020, 6,	14.3	5	
Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PBL). <i>ACS Applied Materials & District Applied & District</i>	9.5	5	
Scalable 3D printing of aperiodic cellular structures by rotational stacking of integral image formation. <i>Science Advances</i> , 2021 , 7, eabh1200	14.3	5	
Subwavelength image manipulation through an oblique layered system. <i>Optics Express</i> , 2011 , 19, 1680	09-3.6	4	
Sub-diffraction-limited far-field imaging in infrared. Frontiers of Physics in China, 2010, 5, 324-329		4	
Plasmon-Assisted Optical Curtains. <i>Plasmonics</i> , 2010 , 5, 369-374	2.4	4	
Molecular Scale Imaging with a Multilayer Superlens. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 919, 7		4	
General One-Pot Method for Preparing Highly Water-Soluble and Biocompatible Photoinitiators for Digital Light Processing-Based 3D Printing of Hydrogels. <i>ACS Applied Materials & Discourt Amp; Interfaces</i> , 2021 , 13, 55507-55516	9.5	4	
High-precision broadband measurement of refractive index by picosecond real-time interferometry. <i>Applied Optics</i> , 2016 , 55, 6625-9	0.2	4	
Addendum: Multiscale metallic metamaterials. <i>Nature Materials</i> , 2017 , 16, 497	27	3	
Dimodal hybrid lightweight sound absorbing material with high stiffness. Applied Physics Everses			
Bimodal hybrid lightweight sound-absorbing material with high stiffness. <i>Applied Physics Express</i> , 2019 , 12, 035002	2.4	3	
	Plasmonic nanofluids enhanced solar thermal transfer liquid 2017, Mediated Growth of Zinc Chalcogen Shells on Gold Nanoparticles by Free-Base Amino Acids. Chemistry of Materials, 2017, 29, 6993-7001 Comment on Bubmicron imaging with a planar silver lens[Appl. Phys. Lett. 84, 4403 (2004)]. Applied Physics Letters, 2005, 86, 126101 Shaping soft materials via digital light processing-based 3D printing: A review. Forces in Mechanics, 2022, 6, 100074 Grayscale stencil lithography for patterning multispectral color filters. Optica, 2020, 7, 1154 Bioinspired metagel with broadband tunable impedance matching. Science Advances, 2020, 6, Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PBL). ACS Applied Materials & Amp; Interfaces, 2021, 13, 8901-8908 Scalable 3D printing of aperiodic cellular structures by rotational stacking of integral image formation. Science Advances, 2021, 7, eabh1200 Subwavelength image manipulation through an oblique layered system. Optics Express, 2011, 19, 1680 Sub-diffraction-limited far-field imaging in infrared. Frontiers of Physics in China, 2010, 5, 324-329 Plasmon-Assisted Optical Curtains. Plasmonics, 2010, 5, 369-374 Molecular Scale Imaging with a Multilayer Superlens. Materials Research Society Symposia Proceedings, 2006, 919, 7 General One-Pot Method for Preparing Highly Water-Soluble and Biocompatible Photoinitiators for Digital Light Processing-Based 3D Printing of Hydrogels. ACS Applied Materials & Denoinitiators for Digital Light Processing-Based 3D Printing of Hydrogels. ACS Applied Materials & Denoinitiators for Digital Light Processing-Based 3D Printing of Hydrogels. ACS Applied Materials & Denoinitiators for Digital Light Processing-Based 3D Printing of Hydrogels. ACS Applied Materials & Denoinitiators for Digital Light Processing-Based 3D Printing of Hydrogels. ACS Applied Materials & Denoinitiators for Digital Light Processing-Based 3D Printing of Hydrogels. ACS Applied Materials & Denoinitiators for Digital Light Processing-Ba	Plasmonic nanofluids enhanced solar thermal transfer liquid 2017, Mediated Growth of Zinc Chalcogen Shells on Gold Nanoparticles by Free-Base Amino Acids. Chemistry of Materials, 2017, 29, 6993-7001 Comment on Bubmicron imaging with a planar silver lens[[Appl. Phys. Lett. 84, 4403 (2004)]. Applied Physics Letters, 2005, 86, 126101 Shaping soft materials via digital light processing-based 3D printing: A review. Forces in Mechanics, 2022, 6, 100074 Grayscale stencil lithography for patterning multispectral color filters. Optica, 2020, 7, 1154 8.6 Bioinspired metagel with broadband tunable impedance matching. Science Advances, 2020, 6, 14.3 Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PBL). ACS Applied Materials & Samp; Interfaces, 2021, 13, 8901-8908 Scalable 3D printing of aperiodic cellular structures by rotational stacking of integral image formation. Science Advances, 2021, 7, eabh1200 Subwavelength image manipulation through an oblique layered system. Optics Express, 2011, 19, 16809-29 Sub-diffraction-limited far-field imaging in infrared. Frontiers of Physics in China, 2010, 5, 324-329 Plasmon-Assisted Optical Curtains. Plasmonics, 2010, 5, 369-374 Addendum: Scale Imaging with a Multilayer Superlens. Materials Research Society Symposia Proceedings, 2006, 919, 7 General One-Pot Method for Preparing Highly Water-Soluble and Biocompatible Photoinitiators for Digital Light Processing-Based 3D Printing of Hydrogels. ACS Applied Materials & Samp; Interfaces, 2021, 1, 3, 55507-55516 High-precision broadband measurement of refractive index by picosecond real-time interferometry. Applied Optics, 2016, 55, 6625-9 Addendum: Multiscale metallic metamaterials. Nature Materials, 2017, 16, 497 27	Plasmonic nanofluids enhanced solar thermal transfer liquid 2017, Mediated Growth of Zinc Chalcogen Shells on Gold Nanoparticles by Free-Base Amino Acids. Chemistry of Materials, 2017, 29, 6993-7001 Comment on Bubmicron imaging with a planar silver lensi[Appl. Phys. Lett. 84, 4403 (2004)]. Applied Physics Letters, 2005, 86, 126101 Shaping soft materials via digital light processing-based 3D printing: A review. Forces in Mechanics, 2012, 6, 100074 Grayscale stencil lithography for patterning multispectral color filters. Optica, 2020, 7, 1154 Bioinspired metagel with broadband tunable impedance matching. Science Advances, 2020, 6, 14-3 Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PSL). ACS Applied Materials & Designation of aperiodic cellular structures by rotational stacking of integral image formation. Science Advances, 2021, 7, eabh1200 Subwavelength image manipulation through an oblique layered system. Optics Express, 2011, 19, 16809-38 Subwavelength image manipulation through an oblique layered system. Optics Express, 2011, 19, 16809-38 Applied Materials & Designation of Physics in China, 2010, 5, 324-329 Plasmon-Assisted Optical Curtains. Plasmonics, 2010, 5, 369-374 Applied Imaging with a Multilayer Superlens. Materials Research Society Symposia Proceedings, 2006, 919, 7 General One-Pot Method for Preparing Highly Water-Soluble and Biocompatible Photoinitiators for Digital Light Processing-Based 3D Printing of Hydrogels. ACS Applied Materials & Designation of Physics in China, 2010, 5, 324-329 Addendum: Multiscale metallic metamaterials. Nature Materials, 2017, 16, 497 Addendum: Multiscale metallic metamaterials. Nature Materials, 2017, 16, 497 27 3

56	Optical Curtain Effect: Extraordinary Optical Transmission Enhanced by Antireflection. <i>Plasmonics</i> , 2013 , 8, 1087-1093	2.4	3
55	A study on the spectral characteristics of surface enhanced Raman scattering based on far-field extinction and near-field electromagnetic field intensity of 2D nanostructures. <i>Journal of Raman Spectroscopy</i> , 2015 , 46, 59-63	2.3	3
54	Controlled directional growth of silver microwires on a solid electrolyte surface. <i>Applied Physics Letters</i> , 2010 , 96, 024101	3.4	3
53	Exploiting transport of guest metal ions in a host ionic crystal lattice for nanofabrication: Cu nanopatterning with Ag2S. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 97, 863-868	2.6	3
52	Near-field multiphoton nanolithography using an apertureless optical probe 2003,		3
51	Tunable plasmonic wires at terahertz frequencies 2004,		3
50	Infrared spectroscopy and ellipsometry of magnetic metamaterials 2005,		3
49	Brownian motion of suspended particles in an anisotropic medium 2000 , 126, 401-406		3
48	Echoes of fluid spin. <i>National Science Review</i> , 2020 , 7, 2-3	10.8	3
47	Dual-stage thermosetting photopolymers for advanced manufacturing. <i>Chemical Engineering Journal</i> , 2021 , 411, 128466	14.7	3
46	Hydrogel-elastomer-based stretchable strain sensor fabricated by a simple projection lithography method. <i>International Journal of Smart and Nano Materials</i> ,1-13	3.6	3
45	Shape-Deformed Mushroom-like Reentrant Structures for Robust Liquid-Repellent Surfaces. <i>ACS Applied Materials & Description (Materials & Description of Materials & Description (Materials & Description of Materials & Description of Mater</i>	9.5	3
44	Solvent-Free Upcycling Vitrimers through Digital Light Processing-Based 3D Printing and Bond Exchange Reaction. <i>Advanced Functional Materials</i> ,2111030	15.6	3
43	Integrated Computational Materials Engineering (ICME) Approaches to the Design and Fabrication of Architected Materials 2017 ,		2
42	Poly(HDDA)-Based Polymers for Microfabrication and Mechanobiology. MRS Advances, 2017, 2, 1315-13	3 2 :17	2
41	Soft Robotics: Miniature Pneumatic Actuators for Soft Robots by High-Resolution Multimaterial 3D Printing (Adv. Mater. Technol. 10/2019). <i>Advanced Materials Technologies</i> , 2019 , 4, 1970054	6.8	2
40	Direct Metal Nano-patterning Using Embossed Solid Electrolyte. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1156, 1		2
39	Plasmonic Sensors Based on Rayleigh Anomaly 2012 ,		2

(2018-2021)

38	Scalable visible light 3D printing and bioprinting using an organic light-emitting diode microdisplay. <i>IScience</i> , 2021 , 24, 103372	6.1	2
37	Acoustic Switches: Harnessing Deformation to Switch On and Off the Propagation of Sound (Adv. Mater. 8/2016). <i>Advanced Materials</i> , 2016 , 28, 1630-1630	24	2
36	Programmable shape-shifting 3D structures via frontal photopolymerization. <i>Materials and Design</i> , 2021 , 198, 109381	8.1	2
35	Characterization of an underwater metamaterial made of aluminum honeycomb panels at low frequencies. <i>Journal of the Acoustical Society of America</i> , 2021 , 149, 1829	2.2	2
34	High Temperature Mid-IR Polarizer via Natural In-Plane Hyperbolic Van der Waals Crystals. <i>Advanced Optical Materials</i> , 2022 , 10, 2101919	8.1	2
33	Enhancing Visible Light Photocatalysis with Hydrogenated Titanium Dioxide for Anti-Fouling Applications. <i>MRS Advances</i> , 2018 , 3, 3181-3187	0.7	1
32	Ultrathin platelet antennas mediated light-matter interaction in monolayer MoS2. <i>Optics Express</i> , 2017 , 25, 10261-10269	3.3	1
31	Modeling of charge-mass transport in solid electrolyte-based electrochemical nanomanufacturing process. <i>Journal of Manufacturing Processes</i> , 2015 , 18, 60-66	5	1
30	Lightweight micro lattices with nanoscale features fabricated from Projection Microstereolithography 2014 ,		1
29	Complex Polarizability of an Isolated Subwavelength Plasmonic Hole in a Thin Metal Film 2013,		1
28	Report on the Seventh U.S. Dapan Joint Seminar on Nanoscale Transport Phenomena Bcience and Engineering. <i>Nanoscale and Microscale Thermophysical Engineering</i> , 2013 , 17, 25-49	3.7	1
27	Enhancing Light Coupling With Plasmonic Optical Antennas 2010 , 271-291		1
26	Mapping of surface plasmon polaritons on nanostructured thin film disks using cathodoluminescence imaging 2011 ,		1
25	Electrical Resistivity & Thermal Stability of Smooth Silver Thin Film for Nanoscale Optoelectronic Devices 2008 ,		1
24	Theory of optical imaging beyond the diffraction limit with a far-field superlens 2006, 6323, 207		1
23	Technology and Applications of Graphene Oxide Membranes 2021 , 379-422		1
22	Recurrent neural network reveals transparent objects through scattering media. <i>Optics Express</i> , 2021 , 29, 5316-5326	3.3	1
21	4D Printing and Its Biomedical Applications 2018 , 343-372		1

20	Microstructured Surfaces for Reducing Chances of Fomite Transmission via Virus-Containing Respiratory Droplets. <i>ACS Nano</i> , 2021 , 15, 14049-14060	16.7	1
19	3D direct printing of mechanical and biocompatible hydrogel meta-structures <i>Bioactive Materials</i> , 2022 , 10, 48-55	16.7	1
18	High resolution stereolithography fabrication of perfusable scaffolds to enable long-term meso-scale hepatic culture for disease modeling. <i>Biofabrication</i> , 2021 , 13,	10.5	1
17	Metric for Quantifying Switching Variability in Resistive Switching Devices. <i>IEEE Electron Device Letters</i> , 2019 , 40, 1546-1549	4.4	O
16	Hydrogels: Metagel with Broadband Tunable Acoustic Properties Over Air Water Solid Ranges (Adv. Funct. Mater. 38/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970264	15.6	О
15	Plasmonic angular momentum on metal-dielectric nano-wedges in a sectorial indefinite metamaterial. <i>Optics Express</i> , 2013 , 21, 28344-58	3.3	O
14	Additive manufacturing of high aspect-ratio structures with self-focusing photopolymerization. <i>Light Advanced Manufacturing</i> , 2022 , 3, 1	1	О
13	Low Heat Capacity 3D Hollow Microarchitected Reactors for Thermal and Fluid Applications. <i>Energies</i> , 2022 , 15, 4073	3.1	O
12	Acoustic Metamaterial. World Scientific Series in Nanoscience and Nanotechnology, 2017, 57-129	0.1	
11	Quest for an Optical Circuit Probe. <i>Microscopy and Microanalysis</i> , 2015 , 21, 1251-1252	0.5	
10	Nanoporous Networks: Assembly of a Bacteriophage-Based Template for the Organization of Materials into Nanoporous Networks (Adv. Mater. 21/2014). <i>Advanced Materials</i> , 2014 , 26, 3568-3568	24	
9	Investigations on Plasmonic Modes of Noble Metal Nano-Disks Using High-Resolution Cathodoluminescence Imaging Spectroscopy. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1294, 48701		
8	Characterizing the Role of Deformation during Electrochemical Etching of Metallic Films. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1297, 175		
7	Optical Silver Superlens Imaging Below the Diffraction Limit. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 919, 1		
6	Smooth Ag Film Deposited Using e-beam Evaporated Ge as an Intermediate Layer for Applications in Nanoscale Devices and Optical Superlens. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 990, 1		
5	Design of Acoustic Metamaterials for Super-Resolution Ultrasound Imaging 2007 , 1169		
4	Molecular Scale Imaging with A Smooth Superlens 2007 , WB3		
3	Coupled Non-Fickian Diffusion and Large Deformation of Hydrogels. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2011 , 25-28	0.3	

LIST OF PUBLICATIONS

Biomimetic on-chip filtration enabled by direct micro-3D printing on membrane.. Scientific Reports, **2022**, 12, 8178

4.9