Bhoopal Bhuvanachandra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3414893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transglycosylation by a chitinase from Enterobacter cloacae subsp. cloacae generates longer chitin oligosaccharides. Scientific Reports, 2017, 7, 5113.	1.6	36
2	New Class of Chitosanase from <i>Bacillus amyloliquefaciens</i> for the Generation of Chitooligosaccharides. Journal of Agricultural and Food Chemistry, 2021, 69, 78-87.	2.4	20
3	Pretreatment with KOH and KOH-urea enhanced hydrolysis of α-chitin by an endo-chitinase from Enterobacter cloacae subsp. cloacae. Carbohydrate Polymers, 2020, 235, 115952.	5.1	18
4	Amino Groups of Chitosan Are Crucial for Binding to a Family 32 Carbohydrate Binding Module of a Chitosanase from Paenibacillus elgii. Journal of Biological Chemistry, 2016, 291, 18977-18990.	1.6	17
5	A transglycosylating chitinase from Chitiniphilus shinanonensis (CsChiL) hydrolyzes chitin in a processive manner. International Journal of Biological Macromolecules, 2020, 145, 1-10.	3.6	17
6	Applicability of endochitinase of Flavobacterium johnsoniae with transglycosylation activity in generating long-chain chitooligosaccharides. International Journal of Biological Macromolecules, 2018, 117, 62-71.	3.6	16
7	Active-site mutations improved the transglycosylation activity of Stenotrophomonas maltophilia chitinase A. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 407-414.	1.1	14
8	Carboxy-terminal glycosyl hydrolase 18 domain of a carbohydrate active protein of Chitinophaga pinensis is a non-processive exochitinase. International Journal of Biological Macromolecules, 2018, 115, 1225-1232.	3.6	9
9	Efficient conversion of α-chitin by multi-modular chitinase from Chitiniphilus shinanonensis with KOH and KOH-urea pretreatment. Carbohydrate Polymers, 2020, 250, 116923.	5.1	5
10	Selection and mutational analyses of the substrate interacting residues of a chitinase from Enterobacter cloacae subsp. cloacae (EcChi2) to improve transglycosylation. International Journal of Biological Macromolecules, 2020, 165, 2432-2441.	3.6	5
11	Midgut aminopeptidase N expression profile in castor semilooper (Achaea janata) during sublethal Cry toxin exposure. Journal of Biosciences, 2021, 46, 1.	0.5	3
12	Elicitation of defense response by transglycosylated chitooligosaccharides in rice seedlings. Carbohydrate Research, 2021, 510, 108459.	1.1	3
13	Deciphering the thermotolerance of chitinase O from Chitiniphilus shinanonensis by in vitro and in silico studies. International Journal of Biological Macromolecules, 2022, 210, 44-52.	3.6	2