

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3414687/publications.pdf Version: 2024-02-01

Heli

#	Article	IF	CITATIONS
1	Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nature Communications, 2022, 13, 2357.	5.8	156
2	N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture. Carbon, 2017, 114, 473-481.	5.4	148
3	Improving Catalytic Hydrogenation Performance of Pd Nanoparticles by Electronic Modulation Using Phosphine Ligands. ACS Catalysis, 2018, 8, 6476-6485.	5.5	148
4	Sn–Ni ₃ S ₂ Ultrathin Nanosheets as Efficient Bifunctional Water-Splitting Catalysts with a Large Current Density and Low Overpotential. ACS Applied Materials & Interfaces, 2018, 10, 40568-40576.	4.0	113
5	Synthesis of bipyridine-based covalent organic frameworks for visible-light-driven photocatalytic water oxidation. Applied Catalysis B: Environmental, 2020, 262, 118271.	10.8	113
6	Enhanced carbon dioxide uptake by metalloporphyrin-based microporous covalent triazine framework. Polymer Chemistry, 2013, 4, 2445.	1.9	108
7	Triarylboronâ€Linked Conjugated Microporous Polymers: Sensing and Removal of Fluoride Ions. Chemistry - A European Journal, 2015, 21, 17355-17362.	1.7	107
8	Adsorption behaviors of methyl orange dye on nitrogen-doped mesoporous carbon materials. Journal of Colloid and Interface Science, 2016, 466, 343-351.	5.0	94
9	Cationic Zn–Porphyrin Polymer Coated onto CNTs as a Cooperative Catalyst for the Synthesis of Cyclic Carbonates. ACS Applied Materials & Interfaces, 2018, 10, 2546-2555.	4.0	92
10	Synthesis of covalent organic frameworks <i>via in situ</i> salen skeleton formation for catalytic applications. Journal of Materials Chemistry A, 2019, 7, 5482-5492.	5.2	89
11	The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO ₂ cycloaddition reaction. Green Chemistry, 2018, 20, 903-911.	4.6	88
12	Structural Engineering of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Organic Transformations. ACS Applied Materials & Interfaces, 2020, 12, 20354-20365.	4.0	80
13	Novel conjugated organic polymers as candidates for visible-light-driven photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2019, 241, 461-470.	10.8	77
14	A K ₂ Fe ₄ O ₇ superionic conductor for all-solid-state potassium metal batteries. Journal of Materials Chemistry A, 2018, 6, 8413-8418.	5.2	75
15	Hierarchical mesoporous organic polymer with an intercalated metal complex for the efficient synthesis of cyclic carbonates from flue gas. Green Chemistry, 2016, 18, 6493-6500.	4.6	74
16	Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations. Angewandte Chemie - International Edition, 2019, 58, 14483-14488.	7.2	71
17	Cationic Zn-Porphyrin Immobilized in Mesoporous Silicas as Bifunctional Catalyst for CO ₂ Cycloaddition Reaction under Cocatalyst Free Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 9237-9245.	3.2	69
18	Screening metal-free photocatalysts from isomorphic covalent organic frameworks for the C-3 functionalization of indoles. Journal of Materials Chemistry A, 2020, 8, 8706-8715.	5.2	66

He Li

#	Article	IF	CITATIONS
19	A porphyrin-linked conjugated microporous polymer with selective carbon dioxide adsorption and heterogeneous organocatalytic performances. RSC Advances, 2014, 4, 6447.	1.7	61
20	Micro-scale spatial location engineering of COF–TiO ₂ heterojunctions for visible light driven photocatalytic alcohol oxidation. Journal of Materials Chemistry A, 2020, 8, 18745-18754.	5.2	58
21	A metallosalen-based microporous organic polymer as a heterogeneous carbon–carbon coupling catalyst. Journal of Materials Chemistry A, 2013, 1, 14108.	5.2	57
22	Review of advances in bifunctional solid acid/base catalysts for sustainable biodiesel production. Applied Catalysis A: General, 2022, 633, 118525.	2.2	57
23	Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. Chinese Journal of Catalysis, 2020, 41, 1288-1297.	6.9	54
24	Synthesis of Bifunctional Porphyrin Polymers for Catalytic Conversion of Dilute CO ₂ to Cyclic Carbonates. ACS Applied Materials & Interfaces, 2021, 13, 29522-29531.	4.0	53
25	Heterogeneous hydroformylation of long-chain alkenes in IL-in-oil Pickering emulsion. Green Chemistry, 2018, 20, 188-196.	4.6	53
26	Construction of Stable Donor–Acceptor Type Covalent Organic Frameworks as Functional Platform for Effective Perovskite Solar Cell Enhancement. Advanced Functional Materials, 2022, 32, .	7.8	46
27	Amide-linked covalent organic frameworks as efficient heterogeneous photocatalysts in water. Chinese Journal of Catalysis, 2021, 42, 2010-2019.	6.9	45
28	The promotion effect of Ï∈-Ï€ interactions in Pd NPs catalysed selective hydrogenation. Nature Communications, 2022, 13, 1770.	5.8	45
29	Ultrasmall Platinum Stabilized on Triphenylphosphineâ€Modified Silica for Chemoselective Hydrogenation. Chemistry - A European Journal, 2017, 23, 7791-7797.	1.7	42
30	Rare-Earth-Metal Complexes Supported by New Chiral Tetra-Azane Chelating Ligands: Synthesis, Characterization, and Catalytic Properties for Intramolecular Asymmetric Hydroamination. Organometallics, 2012, 31, 4670-4679.	1.1	41
31	Synthesis of a Pyridine–Zincâ€Based Porous Organic Polymer for the Coâ€catalystâ€Free Cycloaddition of Epoxides. Chemistry - an Asian Journal, 2017, 12, 1095-1103.	1.7	37
32	Triarylboron-based fluorescent conjugated microporous polymers. RSC Advances, 2013, 3, 21267.	1.7	32
33	Assembly of COFs layer and electron mediator on silica for visible light driven photocatalytic NADH regeneration. Applied Catalysis B: Environmental, 2022, 310, 121314.	10.8	28
34	Cocatalystâ€Free Hybrid Ionic Liquid (IL)â€Based Porous Materials for Efficient Synthesis of Cyclic Carbonates through a Cooperative Activation Pathway. Chemistry - an Asian Journal, 2017, 12, 577-585.	1.7	27
35	A simple and cost-effective synthesis of ionic porous organic polymers with excellent porosity for high iodine capture. Polymer, 2020, 204, 122796.	1.8	27
36	Highly active ultrafine Pd NPs confined in imine-linked COFs for nitrobenzene hydrogenation. Catalysis Science and Technology, 2021, 11, 3873-3879.	2.1	27

He Li

#	Article	IF	CITATIONS
37	The Fabrication of Pd Single Atoms/Clusters on COF Layers as Co-catalysts for Photocatalytic H ₂ Evolution. ACS Applied Materials & Interfaces, 2022, 14, 6885-6893.	4.0	26
38	1T-2H Cr _{<i>x</i>} -MoS ₂ Ultrathin Nanosheets for Durable and Enhanced Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 7227-7232.	3.2	25
39	Enormous Promotion of Photocatalytic Activity through the Use of Near-Single Layer Covalent Organic Frameworks. CCS Chemistry, 2022, 4, 2429-2439.	4.6	25
40	Cooperative Activation of Cobalt–Salen Complexes for Epoxide Hydration Promoted on Flexible Porous Organic Frameworks. Chemistry - A European Journal, 2017, 23, 11504-11508.	1.7	24
41	Simple and universal synthesis of sulfonated porous organic polymers with high proton conductivity. Materials Chemistry Frontiers, 2020, 4, 2339-2345.	3.2	24
42	Achieving the Transformation of Captured CO ₂ to Cyclic Carbonates Catalyzed by a Bipyridine Copper Complex-Intercalated Porous Organic Framework. Industrial & Engineering Chemistry Research, 2020, 59, 9423-9431.	1.8	23
43	Highly active self-immobilized FI-Zr catalysts in a PCP framework for ethylene polymerization. Chemical Communications, 2015, 51, 16703-16706.	2.2	22
44	Light-emitting conjugated microporous polymers based on an excited-state intramolecular proton transfer strategy and selective switch-off sensing of anions. Materials Chemistry Frontiers, 2020, 4, 3040-3046.	3.2	22
45	Intrinsic proton conduction in 2D sulfonated covalent organic frameworks through a post-synthetic strategy. CrystEngComm, 2021, 23, 6234-6238.	1.3	21
46	Efficient Asymmetric Hydrogenation of Quinolines over Chiral Porous Polymers Integrated with Substrate Activation Sites. ACS Catalysis, 2020, 10, 1783-1791.	5.5	20
47	Chemoselective NADH Regeneration: the Synergy Effect of TiO _{<i>x</i>} and Pt in NAD ⁺ Hydrogenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 6499-6506.	3.2	20
48	Nitrogen-doped carbon supported ZnO as highly stable heterogeneous catalysts for transesterification synthesis of ethyl methyl carbonate. Journal of Colloid and Interface Science, 2021, 581, 126-134.	5.0	19
49	Activation of Carbonyl Groups via Weak Interactions in Pt/COF/SiO ₂ Catalyzed Selective Hydrogenation. ACS Catalysis, 2022, 12, 6618-6627.	5.5	19
50	Direct CH Arylation of Unactivated Arenes with Aryl Halides Promoted by Bis(imino)pyridine Derivatives. Asian Journal of Organic Chemistry, 2013, 2, 857-861.	1.3	18
51	Fabrication of NanoCOF/Polyoxometallate Composites for Photocatalytic NADH Regeneration via Cascade Electron Relay. Solar Rrl, 2021, 5, .	3.1	17
52	One-pot synthesis of mesosilica/nano covalent organic polymer composites and their synergistic effect in photocatalysis. Chinese Journal of Catalysis, 2021, 42, 1821-1830.	6.9	15
53	Metallosalen-based microporous organic polymers: synthesis and carbon dioxide uptake. RSC Advances, 2014, 4, 37767-37772.	1.7	14
54	Tuning the Surface Polarity of Microporous Organic Polymers for CO ₂ Capture. Chemistry - an Asian Journal, 2017, 12, 2291-2298.	1.7	14

He Li

#	Article	IF	CITATIONS
55	Synthesis of CNTs@POPâ€Salen Coreâ€Shell Nanostructures for Catalytic Epoxides Hydration. ChemCatChem, 2019, 11, 3952-3958.	1.8	13
56	Sulfonated Triazine-Based Porous Organic Polymers for Excellent Proton Conductivity. ACS Applied Polymer Materials, 2020, 2, 3267-3273.	2.0	13
57	Efficient Production of Nitrones via One-Pot Reductive Coupling Reactions Using Bimetallic RuPt NPs. ACS Catalysis, 2020, 10, 13701-13709.	5.5	13
58	Highly Conjugated Twoâ€dimensional Covalent Organic Frameworks for Efficient lodine Uptake. Chemistry - an Asian Journal, 2022, 17, .	1.7	12
59	A new 3-D open-framework Li-rich vanadoborate and its high ionic conductivity after transforming into glasses. Dalton Transactions, 2017, 46, 2479-2484.	1.6	11
60	Hydrothermal Synthesized Co-Ni3S2 Ultrathin Nanosheets for Efficient and Enhanced Overall Water Splitting. Chemical Research in Chinese Universities, 2019, 35, 179-185.	1.3	11
61	Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations. Angewandte Chemie, 2019, 131, 14625-14630.	1.6	10
62	Aminopolymer Confined in Ethane‣ilica Nanotubes for CO ₂ Capture from Ambient Air. ChemNanoMat, 2020, 6, 1096-1103.	1.5	10
63	Synthesis of polymer/CNTs composites for the heterogeneous asymmetric hydrogenation of quinolines. Chinese Journal of Catalysis, 2019, 40, 1548-1556.	6.9	9
64	Synthesis of Sulfonated Porous Organic Polymers with a Hydrophobic Core for Efficient Acidic Catalysis in Organic Transformations. Chemistry - an Asian Journal, 2021, 16, 2041-2047.	1.7	7
65	Development of efficient solid chiral catalysts with designable linkage for asymmetric transfer hydrogenation of quinoline derivatives. Chinese Journal of Catalysis, 2021, 42, 1576-1585.	6.9	6
66	Waterâ€Promoted Heterogeneous Asymmetric Hydrogenation of Quinolines over Ordered Macroporous Poly(ionic liquid) Catalyst. Asian Journal of Organic Chemistry, 2020, 9, 1623-1630.	1.3	4
67	Fabrication of Flexible Coâ€salen Integrated Polymers for Hydration of Epoxides and Alkynes via Cooperative Activation. ChemNanoMat, 2022, 8, .	1.5	4
68	Blue-light-emitting and hole-transporting molecular materials based on amorphous triphenylamine-functionalized twisted binaphthyl. Comptes Rendus Chimie, 2014, 17, 1102-1108.	0.2	3
69	Innentitelbild: Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations (Angew. Chem. 41/2019). Angewandte Chemie, 2019, 131, 14530-14530.	1.6	1