
Helen McShane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3413709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Injection fears and COVID-19 vaccine hesitancy. Psychological Medicine, 2023, 53, 1185-1195.	4.5	94
2	COVID-19 vaccine hesitancy in the UK: the Oxford coronavirus explanations, attitudes, and narratives survey (Oceans) II. Psychological Medicine, 2022, 52, 3127-3141.	4.5	524
3	Namilumab or infliximab compared with standard of care in hospitalised patients with COVID-19 (CATALYST): a randomised, multicentre, multi-arm, multistage, open-label, adaptive, phase 2, proof-of-concept trial. Lancet Respiratory Medicine,the, 2022, 10, 255-266.	10.7	32
4	Challenges in Developing a Controlled Human Tuberculosis Challenge Model. Current Topics in Microbiology and Immunology, 2022, , 1.	1.1	0
5	Ethics review of COVID-19 human challenge studies: A joint HRA/WHO workshop. Vaccine, 2022, 40, 3484-3489.	3.8	6
6	" <i>lt seems impossible that it's been made so quickly</i> †a qualitative investigation of concerns about the speed of COVID-19 vaccine development and how these may be overcome. Human Vaccines and Immunotherapeutics, 2022, 18, 1-8.	3.3	8
7	Rapid research response to the COVID-19 pandemic: perspectives from a National Institute for Health Biomedical Research Centre. Health Research Policy and Systems, 2022, 20, 24.	2.8	7
8	Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nature Medicine, 2022, 28, 1031-1041.	30.7	281
9	Tuberculosis vaccines in the era of Covid-19 – what is taking us so long?. EBioMedicine, 2022, 79, 103993.	6.1	15
10	Functional in-vitro evaluation of the non-specific effects of BCG vaccination in a randomised controlled clinical study. Scientific Reports, 2022, 12, 7808.	3.3	2
11	Tuberculosis Vaccines. , 2021, , 49-58.		0
12	A non-human primate in vitro functional assay for the early evaluation of TB vaccine candidates. Npj Vaccines, 2021, 6, 3.	6.0	7
13	Using an effective TB vaccination regimen to identify immune responses associated with protection in the murine model. Vaccine, 2021, 39, 1452-1462.	3.8	12
14	Local Pulmonary Immunological Biomarkers in Tuberculosis. Frontiers in Immunology, 2021, 12, 640916.	4.8	20
15	The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Research, 2021, 10, 257.	1.6	2
16	Online Social Endorsement and Covid-19 Vaccine Hesitancy in the United Kingdom. Social Media and Society, 2021, 7, 205630512110088.	3.0	64
17	Phase I Trial Evaluating the Safety and Immunogenicity of Candidate TB Vaccine MVA85A, Delivered by Aerosol to Healthy M.tb-Infected Adults. Vaccines, 2021, 9, 396.	4.4	7
18	Lessons from the pandemic on the value of research infrastructure. Health Research Policy and Systems, 2021, 19, 54.	2.8	10

#	Article	IF	CITATIONS
19	High-dose Mycobacterium tuberculosis aerosol challenge cannot overcome BCG-induced protection in Chinese origin cynomolgus macaques; implications of natural resistance for vaccine evaluation. Scientific Reports, 2021, 11, 12274.	3.3	4
20	Equity for excellence in academic institutions: a manifesto for change. Wellcome Open Research, 2021, 6, 142.	1.8	6
21	Effects of different types of written vaccination information on COVID-19 vaccine hesitancy in the UK (OCEANS-III): a single-blind, parallel-group, randomised controlled trial. Lancet Public Health, The, 2021, 6, e416-e427.	10.0	184
22	SARS-CoV-2 Human Challenge Studies — Establishing the Model during an Evolving Pandemic. New England Journal of Medicine, 2021, 385, 961-964.	27.0	39
23	The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Research, 2021, 10, 257.	1.6	0
24	Distinct blood transcriptomic signature of treatment in latent tuberculosis infected individuals at risk of developing active disease. Tuberculosis, 2021, 131, 102127.	1.9	13
25	A large National Institute for HealthÂResearch (NIHR) Biomedical Research Centre facilitates impactful cross-disciplinary and collaborative translational research publications and research collaborationÂnetworks: a bibliometric evaluation study. Journal of Translational Medicine, 2021, 19, 483.	4.4	3
26	Induction of Functional Specific Antibodies, IgG-Secreting Plasmablasts and Memory B Cells Following BCG Vaccination. Frontiers in Immunology, 2021, 12, 798207.	4.8	10
27	Controlled Human Infection Models: Is it Really Feasible to Give People Tuberculosis?. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1180-1181.	5.6	11
28	Identification of antigens presented by MHC for vaccines against tuberculosis. Npj Vaccines, 2020, 5, 2.	6.0	69
29	Evaluating the sensitivity of the bovine BCG challenge model using a prime boost Ad85A vaccine regimen. Vaccine, 2020, 38, 1241-1248.	3.8	3
30	A phase I trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx1 85A prime – MVA85A boost in healthy UK adults. Vaccine, 2020, 38, 779-789.	3.8	58
31	Ten minutes with Professor Helen McShane, Director, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust. BMJ Leader, 2020, 4, 96-97.	1.5	1
32	Towards new TB vaccines. Seminars in Immunopathology, 2020, 42, 315-331.	6.1	26
33	Markers of achievement for assessing and monitoring gender equity in a UK National Institute for Health Research Biomedical Research Centre: A two-factor model. PLoS ONE, 2020, 15, e0239589.	2.5	9
34	Insights and challenges in tuberculosis vaccine development. Lancet Respiratory Medicine,the, 2019, 7, 810-819.	10.7	46
35	Optimisation, harmonisation and standardisation of the direct mycobacterial growth inhibition assay using cryopreserved human peripheral blood mononuclear cells. Journal of Immunological Methods, 2019, 469, 1-10.	1.4	28
36	The Humoral Immune Response to BCG Vaccination. Frontiers in Immunology, 2019, 10, 1317.	4.8	86

#	Article	IF	CITATIONS
37	Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trial. PLoS Medicine, 2019, 16, e1002790.	8.4	57
38	Mucosal delivery of tuberculosis vaccines: a review of current approaches and challenges. Expert Review of Vaccines, 2019, 18, 1271-1284.	4.4	37
39	Current approaches toward identifying a correlate of immune protection from tuberculosis. Expert Review of Vaccines, 2019, 18, 43-59.	4.4	18
40	Human challenge trials in vaccine development, Rockville, MD, USA, September 28–30, 2017. Biologicals, 2019, 61, 85-94.	1.4	29
41	Tools for Assessing the Protective Efficacy of TB Vaccines in Humans: in vitro Mycobacterial Growth Inhibition Predicts Outcome of in vivo Mycobacterial Infection. Frontiers in Immunology, 2019, 10, 2983.	4.8	24
42	Cytomegalovirus infection is a risk factor for tuberculosis disease in infants. JCI Insight, 2019, 4, .	5.0	42
43	Identification and Evaluation of Novel Protective Antigens for the Development of a Candidate Tuberculosis Subunit Vaccine. Infection and Immunity, 2018, 86, .	2.2	70
44	Development of a non-human primate BCG infection model for the evaluation of candidate tuberculosis vaccines. Tuberculosis, 2018, 108, 99-105.	1.9	24
45	Human Immunodeficiency Virus Infection Impairs Th1 and Th17 Mycobacterium tuberculosis–Specific T-Cell Responses. Journal of Infectious Diseases, 2018, 217, 1782-1792.	4.0	26
46	Safety and Immunogenicity of Newborn MVA85A Vaccination and Selective, Delayed Bacille Calmette-Guerin for Infants of Human Immunodeficiency Virus-Infected Mothers: A Phase 2 Randomized, Controlled Trial. Clinical Infectious Diseases, 2018, 66, 554-563.	5.8	32
47	Factors influencing the higher incidence of tuberculosis among migrants and ethnic minorities in the UK. F1000Research, 2018, 7, 461.	1.6	30
48	Human Hookworm Infection Enhances Mycobacterial Growth Inhibition and Associates With Reduced Risk of Tuberculosis Infection. Frontiers in Immunology, 2018, 9, 2893.	4.8	28
49	Regulation of mycobacterial infection by macrophage Gch1 and tetrahydrobiopterin. Nature Communications, 2018, 9, 5409.	12.8	24
50	Immunological correlates of mycobacterial growth inhibition describe a spectrum of tuberculosis infection. Scientific Reports, 2018, 8, 14480.	3.3	43
51	Progress and challenges in TB vaccine development. F1000Research, 2018, 7, 199.	1.6	93
52	Cross-laboratory evaluation of multiplex bead assays including independent common reference standards for immunological monitoring of observational and interventional human studies. PLoS ONE, 2018, 13, e0201205.	2.5	15
53	Elevated IgG Responses in Infants Are Associated With Reduced Prevalence of Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2018, 9, 1529.	4.8	16
54	WHO preferred product characteristics for new vaccines against tuberculosis. Lancet Infectious Diseases, The, 2018, 18, 828-829.	9.1	31

#	Article	IF	CITATIONS
55	VALIDATE: Exploiting the synergy between complex intracellular pathogens to expedite vaccine research and development for tuberculosis, leishmaniasis, melioidosis and leprosy. F1000Research, 2018, 7, 485.	1.6	2
56	Factors influencing the higher incidence of tuberculosis among migrants and ethnic minorities in the UK. F1000Research, 2018, 7, 461.	1.6	25
57	Lessons from the first clinical trial of a non-licensed vaccine among UgandanÂadolescents: a phase II field trial of the tuberculosis candidate vaccine, MVA85A. Wellcome Open Research, 2018, 3, 121.	1.8	3
58	Hepcidin deficiency and iron deficiency do not alter tuberculosis susceptibility in a murine M.tb infection model. PLoS ONE, 2018, 13, e0191038.	2.5	13
59	Using Data from Macaques To Predict Gamma Interferon Responses after Mycobacterium bovis BCG Vaccination in Humans: a Proof-of-Concept Study of Immunostimulation/Immunodynamic Modeling Methods. Vaccine Journal, 2017, 24, .	3.1	7
60	Serial QuantiFERON testing and tuberculosis disease risk among young children: an observational cohort study. Lancet Respiratory Medicine,the, 2017, 5, 282-290.	10.7	110
61	The influence of haemoglobin and iron on in vitro mycobacterial growth inhibition assays. Scientific Reports, 2017, 7, 43478.	3.3	39
62	The Cross-Species Mycobacterial Growth Inhibition Assay (MGIA) Project, 2010–2014. Vaccine Journal, 2017, 24, .	3.1	41
63	A mycobacterial growth inhibition assay (MGIA) for bovine TB vaccine development. Tuberculosis, 2017, 106, 118-122.	1.9	10
64	Innate Immune Responses to Tuberculosis. , 2017, , 1-31.		0
65	Clinical Testing of Tuberculosis Vaccine Candidates. , 2017, , 193-211.		1
66	Human Immunology of Tuberculosis. , 2017, , 213-237.		6
67	The Immune Interaction between HIV-1 Infection andMycobacterium tuberculosis. , 2017, , 239-268.		1
68	Latent Mycobacterium tuberculosis Infection and Interferon-Gamma Release Assays. , 2017, , 379-388.		0
69	Impact of the GeneXpert MTB/RIF Technology on Tuberculosis Control. , 2017, , 389-410.		1
70	The Role of Host Genetics (and Genomics) in Tuberculosis. , 2017, , 411-452.		0
71	Cytokines and Chemokines inMycobacterium tuberculosisInfection. , 2017, , 33-72.		10
72	The Evolutionary History, Demography, and Spread of the Mycobacterium tuberculosis Complex. , 2017, , 453-473.		0

#	Article	IF	CITATIONS
73	Impact of Genetic Diversity on the Biology ofMycobacterium tuberculosisComplex Strains. , 2017, , 475-493.		Ο
74	Killing Mycobacterium tuberculosis In Vitro: What Model Systems Can Teach Us. , 2017, , 541-556.		0
75	DNA Replication in Mycobacterium tuberculosis. , 2017, , 581-606.		1
76	The Sec Pathways and Exportomes of Mycobacterium tuberculosis. , 2017, , 607-625.		1
77	The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis. , 2017, , 627-634.		1
78	Regulation of Immunity to Tuberculosis. , 2017, , 73-93.		1
79	Metabolic Perspectives on Persistence. , 2017, , 653-669.		2
80	Mycobacterium tuberculosisin the Face of Host-Imposed Nutrient Limitation. , 2017, , 699-715.		0
81	The Memory Immune Response to Tuberculosis. , 2017, , 95-115.		1
82	Animal Models of Tuberculosis: An Overview. , 2017, , 131-142.		0
83	Mouse and Guinea Pig Models of Tuberculosis. , 2017, , 143-162.		4
84	Experimental Infection Models of Tuberculosis in Domestic Livestock. , 2017, , 177-191.		0
85	TBVAC2020: Advancing Tuberculosis Vaccines from Discovery to Clinical Development. Frontiers in Immunology, 2017, 8, 1203.	4.8	44
86	Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology. International Journal of Molecular Sciences, 2017, 18, 312.	4.1	50
87	The effect of current Schistosoma mansoni infection on the immunogenicity of a candidate TB vaccine, MVA85A, in BCG-vaccinated adolescents: An open-label trial. PLoS Neglected Tropical Diseases, 2017, 11, e0005440.	3.0	28
88	Assay optimisation and technology transfer for multi-site immuno-monitoring in vaccine trials. PLoS ONE, 2017, 12, e0184391.	2.5	8
89	Replacing, reducing and refining the use of animals in tuberculosis vaccine research. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 157-166.	1.5	20
90	Clinical Testing of Tuberculosis Vaccine Candidates. Microbiology Spectrum, 2016, 4, .	3.0	24

#	Article	IF	CITATIONS
91	Effects of MVA85A vaccine on tuberculosis challenge in animals: systematic review. International Journal of Epidemiology, 2016, 45, 580-580.	1.9	1
92	From AIDS to TB vaccines $\hat{a} \in$ " A career in infectious diseases and translational vaccinology. Human Vaccines and Immunotherapeutics, 2016, 12, 5-7.	3.3	0
93	Association of Human Antibodies to Arabinomannan With Enhanced Mycobacterial Opsonophagocytosis and Intracellular Growth Reduction. Journal of Infectious Diseases, 2016, 214, 300-310.	4.0	110
94	Antibodies and tuberculosis. Tuberculosis, 2016, 101, 102-113.	1.9	131
95	In vitro mycobacterial growth inhibition assays: A tool for the assessment of protective immunity and evaluation of tuberculosis vaccine efficacy. Vaccine, 2016, 34, 4656-4665.	3.8	61
96	T-cell activation is an immune correlate of risk in BCG vaccinated infants. Nature Communications, 2016, 7, 11290.	12.8	236
97	A new tool for tuberculosis vaccine screening: Ex vivo Mycobacterial Growth Inhibition Assay indicates BCG-mediated protection in a murine model of tuberculosis. BMC Infectious Diseases, 2016, 16, 412.	2.9	27
98	A review of clinical models for the evaluation of human TB vaccines. Human Vaccines and Immunotherapeutics, 2016, 12, 1177-1187.	3.3	20
99	Optimization of a Human Bacille Calmette-Guérin Challenge Model: A Tool to Evaluate Antimycobacterial Immunity. Journal of Infectious Diseases, 2016, 213, 824-830.	4.0	28
100	Why don't we have an effective tuberculosis vaccine yet?. Expert Review of Vaccines, 2016, 15, 1009-1013.	4.4	60
101	A first-in-human phase 1 trial to evaluate the safety and immunogenicity of the candidate tuberculosis vaccine MVA85A-IMX313, administered to BCG-vaccinated adults. Vaccine, 2016, 34, 1412-1421.	3.8	37
102	Individual-level factors associated with variation in mycobacterial-specific immune response: Gender and previous BCG vaccination status. Tuberculosis, 2016, 96, 37-43.	1.9	6
103	Distinct Transcriptional and Anti-Mycobacterial Profiles of Peripheral Blood Monocytes Dependent on the Ratio of Monocytes: Lymphocytes. EBioMedicine, 2015, 2, 1619-1626.	6.1	61
104	The Role of Clinical Symptoms in the Diagnosis of Intrathoracic Tuberculosis in Young Children. Pediatric Infectious Disease Journal, 2015, 34, 1157-1162.	2.0	23
105	Risk of Disease After Isoniazid Preventive Therapy for Mycobacterium tuberculosis Exposure in Young HIV-uninfected Children. Pediatric Infectious Disease Journal, 2015, 34, 1218-1222.	2.0	9
106	Intracellular Cytokine Staining and Flow Cytometry: Considerations for Application in Clinical Trials of Novel Tuberculosis Vaccines. PLoS ONE, 2015, 10, e0138042.	2.5	71
107	The human immune response to tuberculosis and its treatment: a view from the blood. Immunological Reviews, 2015, 264, 88-102.	6.0	168
108	Aerosol immunisation for TB: matching route of vaccination to route of infection. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 175-181.	1.8	62

#	Article	IF	CITATIONS
109	Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. Lancet Respiratory Medicine,the, 2015, 3, 190-200.	10.7	122
110	TB vaccine development: where are we and why is it so difficult?. Thorax, 2015, 70, 299-301.	5.6	25
111	Gene Expression and Cytokine Profile Correlate With Mycobacterial Growth in a Human BCG Challenge Model. Journal of Infectious Diseases, 2015, 211, 1499-1509.	4.0	36
112	Evaluation of Xpert® MTB/RIF Assay in Induced Sputum and Gastric Lavage Samples from Young Children with Suspected Tuberculosis from the MVA85A TB Vaccine Trial. PLoS ONE, 2015, 10, e0141623.	2.5	19
113	A Phase I, Open-Label Trial, Evaluating the Safety and Immunogenicity of Candidate Tuberculosis Vaccines AERAS-402 and MVA85A, Administered by Prime-Boost Regime in BCG-Vaccinated Healthy Adults. PLoS ONE, 2015, 10, e0141687.	2.5	33
114	The Candidate TB Vaccine, MVA85A, Induces Highly Durable Th1 Responses. PLoS ONE, 2014, 9, e87340.	2.5	79
115	Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infectious Diseases, The, 2014, 14, 939-946.	9.1	164
116	Process of Assay Selection and Optimization for the Study of Case and Control Samples from a Phase IIb Efficacy Trial of a Candidate Tuberculosis Vaccine, MVA85A. Vaccine Journal, 2014, 21, 1005-1011.	3.1	15
117	Serum indoleamine 2,3-dioxygenase activity is associated with reduced immunogenicity following vaccination with MVA85A. BMC Infectious Diseases, 2014, 14, 660.	2.9	20
118	Brief Report. Journal of Acquired Immune Deficiency Syndromes (1999), 2014, 67, 573-575.	2.1	36
119	Ratio of Monocytes to Lymphocytes in Peripheral Blood Identifies Adults at Risk of Incident Tuberculosis Among HIV-Infected Adults Initiating Antiretroviral Therapy. Journal of Infectious Diseases, 2014, 209, 500-509.	4.0	99
120	Editorial Commentary: Understanding BCG Is the Key to Improving It. Clinical Infectious Diseases, 2014, 58, 481-482.	5.8	21
121	Evaluation of a Human BCG Challenge Model to Assess Antimycobacterial Immunity Induced by BCG and a Candidate Tuberculosis Vaccine, MVA85A, Alone and in Combination. Journal of Infectious Diseases, 2014, 209, 1259-1268.	4.0	73
122	A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis, 2014, 94, 105-110.	1.9	103
123	Development of a BCG challenge model for the testing of vaccine candidates against tuberculosis in cattle. Vaccine, 2014, 32, 5645-5649.	3.8	29
124	Inflammatory and myeloid-associated gene expression before and one day after infant vaccination with MVA85A correlates with induction of a T cell response. BMC Infectious Diseases, 2014, 14, 314.	2.9	24
125	The association between the ratio of monocytes:lymphocytes at age 3Âmonths and risk of tuberculosis (TB) in the first two years of life. BMC Medicine, 2014, 12, 120.	5.5	80
126	Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis. Tuberculosis, 2014, 94, 226-237.	1.9	71

#	Article	IF	CITATIONS
127	Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood, 2014, 124, e33-e44.	1.4	83
128	Tuberculin Skin Testing and Treatment Modulates Interferon-Gamma Release Assay Results for Latent Tuberculosis in Migrants. PLoS ONE, 2014, 9, e97366.	2.5	23
129	Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M.Âtb). Tuberculosis, 2013, 93, 551-557.	1.9	45
130	Tuberculosis vaccine trials – Authors' reply. Lancet, The, 2013, 381, 2254.	13.7	0
131	Inhibition of Mycobacterial Growth <i>In Vitro</i> following Primary but Not Secondary Vaccination with Mycobacterium bovis BCG. Vaccine Journal, 2013, 20, 1683-1689.	3.1	85
132	Heterologous vaccination against human tuberculosis modulates antigenâ€specific <scp>CD</scp> 4 ⁺ <scp>T</scp> â€cell function. European Journal of Immunology, 2013, 43, 2409-2420.	2.9	26
133	Comparing the safety and immunogenicity of a candidate TB vaccine MVA85A administered by intramuscular and intradermal delivery. Vaccine, 2013, 31, 1026-1033.	3.8	47
134	Vaccination against tuberculosis: How can we better BCG?. Microbial Pathogenesis, 2013, 58, 2-16.	2.9	71
135	Lessons learnt from the first efficacy trial of a new infant tuberculosis vaccine since BCG. Tuberculosis, 2013, 93, 143-149.	1.9	35
136	Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet, The, 2013, 381, 1021-1028.	13.7	903
137	The next 10 years for tuberculosis vaccines: do we have the right plans in place?. Expert Review of Vaccines, 2013, 12, 443-451.	4.4	15
138	Determining the validity of hospital laboratory reference intervals for healthy young adults participating in early clinical trials of candidate vaccines. Human Vaccines and Immunotherapeutics, 2013, 9, 1741-1751.	3.3	6
139	Safety and immunogenicity of an FP9-vectored candidate tuberculosis vaccine (FP85A), alone and with candidate vaccine MVA85A in BCG-vaccinated healthy adults. Human Vaccines and Immunotherapeutics, 2013, 9, 50-62.	3.3	21
140	Two Doses of Candidate TB Vaccine MVA85A in Antiretroviral Therapy (ART) NaÃ⁻ve Subjects Gives Comparable Immunogenicity to One Dose in ART+ Subjects. PLoS ONE, 2013, 8, e67177.	2.5	11
141	A Multi-Antigenic Adenoviral-Vectored Vaccine Improves BCG-Induced Protection of Goats against Pulmonary Tuberculosis Infection and Prevents Disease Progression. PLoS ONE, 2013, 8, e81317.	2.5	33
142	Roles for Treg Expansion and HMGB1 Signaling through the TLR1-2-6 Axis in Determining the Magnitude of the Antigen-Specific Immune Response to MVA85A. PLoS ONE, 2013, 8, e67922.	2.5	27
143	Cholera Toxin Enhances Vaccine-Induced Protection against Mycobacterium Tuberculosis Challenge in Mice. PLoS ONE, 2013, 8, e78312.	2.5	20
144	A Human Challenge Model for Mycobacterium tuberculosis Using Mycobacterium bovis Bacille Calmette-Guérin. Journal of Infectious Diseases, 2012, 205, 1035-1042.	4.0	99

#	Article	IF	CITATIONS
145	Global progress in tuberculosis vaccine development. Clinical Medicine, 2012, 12, s17-s20.	1.9	1
146	Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults. Vaccine, 2012, 30, 5616-5624.	3.8	40
147	A Phase IIa Trial of the New Tuberculosis Vaccine, MVA85A, in HIV- and/or <i>Mycobacterium tuberculosis</i> –infected Adults. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 769-778.	5.6	78
148	A review of the tolerability of the candidate TB vaccine, MVA85A compared with BCG and Yellow Fever vaccines, and correlation between MVA85A vaccine reactogenicity and cellular immunogenicity. Trials in Vaccinology, 2012, 1, 27-35.	1.2	5
149	Optimising Immunogenicity with Viral Vectors: Mixing MVA and HAdV-5 Expressing the Mycobacterial Antigen Ag85A in a Single Injection. PLoS ONE, 2012, 7, e50447.	2.5	23
150	Tuberculosis vaccines in clinical trials. Expert Review of Vaccines, 2011, 10, 645-658.	4.4	90
151	Tuberculosis vaccines: progress and challenges. Trends in Pharmacological Sciences, 2011, 32, 601-606.	8.7	28
152	Preclinical Development of an In Vivo BCG Challenge Model for Testing Candidate TB Vaccine Efficacy. PLoS ONE, 2011, 6, e19840.	2.5	36
153	Dual Neonate Vaccine Platform against HIV-1 and M. tuberculosis. PLoS ONE, 2011, 6, e20067.	2.5	27
154	Th1/Th17 Cell Induction and Corresponding Reduction in ATP Consumption following Vaccination with the Novel Mycobacterium tuberculosis Vaccine MVA85A. PLoS ONE, 2011, 6, e23463.	2.5	39
155	Identification of Antigens Specific to Non-Tuberculous Mycobacteria: The Mce Family of Proteins as a Target of T Cell Immune Responses. PLoS ONE, 2011, 6, e26434.	2.5	20
156	A Phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ Open, 2011, 1, e000223-e000223.	1.9	42
157	Investigating the Induction of Vaccine-Induced Th17 and Regulatory T Cells in Healthy, <i>Mycobacterium bovis</i> BCG Immunized Adults Vaccinated with a New Tuberculosis Vaccine, MVA85A. Vaccine Journal, 2011, 18, 696-696.	3.1	0
158	Dose-Finding Study of the Novel Tuberculosis Vaccine, MVA85A, in Healthy BCG-Vaccinated Infants. Journal of Infectious Diseases, 2011, 203, 1832-1843.	4.0	75
159	Tuberculosis vaccine promises sterilizing immunity. Nature Medicine, 2011, 17, 1185-1186.	30.7	5
160	Tuberculosis vaccines: beyond bacille Calmette–Guérin. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2782-2789.	4.0	110
161	Immunogenicity of the Tuberculosis Vaccine MVA85A Is Reduced by Coadministration with EPI Vaccines in a Randomized Controlled Trial in Gambian Infants. Science Translational Medicine, 2011, 3, 88ra56.	12.4	50
162	Modified vaccinia Ankaraâ€expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4 ⁺ T cells. European Journal of Immunology, 2010, 40, 279-290.	2.9	171

#	ARTICLE	IF	CITATIONS
163	Mycobacterium tuberculosis PPD-induced immune biomarkers measurable in vitro following BCG vaccination of UK adolescents by multiplex bead array and intracellular cytokine staining. BMC Immunology, 2010, 11, 35.	2.2	40
164	The Tuberculin Skin Test (TST) Is Affected by Recent BCG Vaccination but Not by Exposure to Non-Tuberculosis Mycobacteria (NTM) during Early Life. PLoS ONE, 2010, 5, e12287.	2.5	44
165	Investigating the Induction of Vaccine-Induced Th17 and Regulatory T Cells in Healthy, <i>Mycobacterium bovis</i> BCG-Immunized Adults Vaccinated with a New Tuberculosis Vaccine, MVA85A. Vaccine Journal, 2010, 17, 1066-1073.	3.1	50
166	Delaying Bacillus Calmette-Guérin Vaccination from Birth to 4 1/2 Months of Age Reduces Postvaccination Th1 and IL-17 Responses but Leads to Comparable Mycobacterial Responses at 9 Months of Age. Journal of Immunology, 2010, 185, 2620-2628.	0.8	84
167	MVA.85A Boosting of BCG and an Attenuated, phoP Deficient M. tuberculosis Vaccine Both Show Protective Efficacy Against Tuberculosis in Rhesus Macaques. PLoS ONE, 2009, 4, e5264.	2.5	186
168	Identification of Major Factors Influencing ELISpot-Based Monitoring of Cellular Responses to Antigens from Mycobacterium tuberculosis. PLoS ONE, 2009, 4, e7972.	2.5	46
169	Viral Booster Vaccines Improve <i>Mycobacterium bovis</i> BCG-Induced Protection against Bovine Tuberculosis. Infection and Immunity, 2009, 77, 3364-3373.	2.2	237
170	Immunogenicity and Protective Efficacy of Prime-Boost Regimens with Recombinant Δ <i>ureC hly</i> ⁺ <i>Mycobacterium bovis</i> BCG and Modified Vaccinia Virus Ankara Expressing <i>M. tuberculosis</i> Antigen 85A against Murine Tuberculosis. Infection and Immunity, 2009, 77, 622-631.	2.2	59
171	Safety and Immunogenicity of a New Tuberculosis Vaccine, MVA85A, in <i>Mycobacterium tuberculosis</i> –infected Individuals. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 724-733.	5.6	107
172	A New Vaccine for Tuberculosis: The Challenges of Development and Deployment. Journal of Bioethical Inquiry, 2009, 6, 219-228.	1.5	9
173	Safety and Immunogenicity of Boosting BCG Vaccinated Subjects with BCG: Comparison with Boosting with a New TB Vaccine, MVA85A. PLoS ONE, 2009, 4, e5934.	2.5	61
174	A New Vaccine for Tuberculosis: The Challenges of Development and Deployment. , 2009, , 63-72.		0
175	Need for more TB vaccine field sites. Indian Journal of Experimental Biology, 2009, 47, 445-6.	0.0	1
176	A comparison of IFNÎ ³ detection methods used in tuberculosis vaccine trials. Tuberculosis, 2008, 88, 631-640.	1.9	47
177	Boosting BCG vaccination with MVA85A down-regulates the immunoregulatory cytokine TGF- $\hat{1}^21$. Vaccine, 2008, 26, 5269-5275.	3.8	23
178	Multifunctional, High-Level Cytokine-Producing Th1 Cells in the Lung, but Not Spleen, Correlate with Protection against <i>Mycobacterium tuberculosis</i> Aerosol Challenge in Mice. Journal of Immunology, 2008, 181, 4955-4964.	0.8	269
179	Safety and Immunogenicity of a New Tuberculosis Vaccine, MVA85A, in Healthy Adults in South Africa. Journal of Infectious Diseases, 2008, 198, 544-552.	4.0	155
180	Tuberculosis vaccines: present and future. Expert Review of Respiratory Medicine, 2008, 2, 721-738.	2.5	5

#	Article	IF	CITATIONS
181	Immunological Outcomes of New Tuberculosis Vaccine Trials: WHO Panel Recommendations. PLoS Medicine, 2008, 5, e145.	8.4	82
182	Safety and Immunogenicity of the Candidate Tuberculosis Vaccine MVA85A in West Africa. PLoS ONE, 2008, 3, e2921.	2.5	45
183	Vaccine Platform for Prevention of Tuberculosis and Mother-to-Child Transmission of Human Immunodeficiency Virus Type 1 through Breastfeeding. Journal of Virology, 2007, 81, 9408-9418.	3.4	47
184	Immunisation with BCG and recombinant MVA85A induces longâ€lasting, polyfunctional <i>Mycobacterium tuberculosis</i> â€specific CD4 ⁺ memory T lymphocyte populations. European Journal of Immunology, 2007, 37, 3089-3100.	2.9	206
185	Boosting BCG with Recombinant Modified Vaccinia Ankara Expressing Antigen 85A: Different Boosting Intervals and Implications for Efficacy Trials. PLoS ONE, 2007, 2, e1052.	2.5	57
186	Early clinical trials with a new tuberculosis vaccine, MVA85A, in tuberculosis-endemic countries: issues in study design. Lancet Infectious Diseases, The, 2006, 6, 522-528.	9.1	55
187	Phase I clinical trial safety of DNA- and modified virus Ankara-vectored human immunodeficiency virus type 1 (HIV-1) vaccines administered alone and in a prime-boost regime to healthy HIV-1-uninfected volunteers. Vaccine, 2006, 24, 417-425.	3.8	117
188	Synergistic DNA–MVA prime-boost vaccination regimes for malaria and tuberculosis. Vaccine, 2006, 24, 4554-4561.	3.8	97
189	Impaired IFN-Î ³ -secreting capacity in mycobacterial antigen-specific CD4 T cells during chronic HIV-1 infection despite long-term HAART. Aids, 2006, 20, 821-829.	2.2	63
190	Tuberculosis vaccines: current status and future prospects. Expert Opinion on Emerging Drugs, 2006, 11, 207-215.	2.4	9
191	Prime-boost immunisation strategies for tuberculosis. Microbes and Infection, 2005, 7, 962-967.	1.9	103
192	Evaluation of vaccines in the EU TB Vaccine Cluster using a guinea pig aerosol infection model of tuberculosis. Tuberculosis, 2005, 85, 29-38.	1.9	154
193	Boosting BCG with MVA85A: the first candidate subunit vaccine for tuberculosis in clinical trials. Tuberculosis, 2005, 85, 47-52.	1.9	114
194	Co-infection with HIV and TB: double trouble. International Journal of STD and AIDS, 2005, 16, 95-101.	1.1	83
195	A human immunodeficiency virus 1 (HIV-1) clade A vaccine in clinical trials: stimulation of HIV-specific T-cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. Journal of General Virology, 2004, 85, 911-919.	2.9	206
196	Developing an improved vaccine against tuberculosis. Expert Review of Vaccines, 2004, 3, 299-306.	4.4	25
197	Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCC-primed and naturally acquired antimycobacterial immunity in humans. Nature Medicine, 2004, 10, 1240-1244.	30.7	538
198	CD8+ T cell-mediated suppression of intracellularMycobacterium tuberculosis growth in activated human macrophages. European Journal of Immunology, 2003, 33, 3293-3302.	2.9	43

3

#	Article	IF	CITATIONS
199	Susceptibility to tuberculosis - the importance of the pathogen as well as the host. Clinical and Experimental Immunology, 2003, 133, 20-21.	2.6	21
200	Enhanced Immunogenicity and Protective Efficacy Against <i>Mycobacterium tuberculosis</i> of Bacille Calmette-Guelrin Vaccine Using Mucosal Administration and Boosting with a Recombinant Modified Vaccinia Virus Ankara. Journal of Immunology, 2003, 171, 1602-1609.	0.8	345
201	Clinical Evaluation of New Immunisation Strategies for Enhancing T Cell Responses against <i>M. Tuberculosis</i> . Clinical Science, 2003, 104, 51P-51P.	0.0	0
202	Protective Immunity against Mycobacterium tuberculosis Induced by Dendritic Cells Pulsed with both CD8+- and CD4+-T-Cell Epitopes from Antigen 85A. Infection and Immunity, 2002, 70, 1623-1626.	2.2	119
203	Prime-boost immunization strategies for infectious diseases. Current Opinion in Molecular Therapeutics, 2002, 4, 23-7.	2.8	44
204	Rapid Detection of <i>Mycobacterium tuberculosis</i> Infection by Enumeration of Antigen-specific T Cells. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 824-828.	5.6	410
205	Enhanced Immunogenicity of CD4+ T-Cell Responses and Protective Efficacy of a DNA-Modified Vaccinia Virus Ankara Prime-Boost Vaccination Regimen for Murine Tuberculosis. Infection and Immunity, 2001, 69, 681-686.	2.2	213
206	Direct Ex Vivo Analysis of Antigen-Specific IFN-γ-Secreting CD4 T Cells in <i>Mycobacterium tuberculosis</i> -Infected Individuals: Associations with Clinical Disease State and Effect of Treatment. Journal of Immunology, 2001, 167, 5217-5225.	0.8	329
207	High frequencies of circulating IFN-Î ³ -secreting CD8 cytotoxic T cells specific for a novel MHC class I-restrictedMycobacterium tuberculosis epitope inM. tuberculosis-infected subjects without disease. European Journal of Immunology, 2000, 30, 2713-2721.	2.9	94
208	Preclinical Efficacy Testing of New Drug Candidates. , 0, , 269-293.		3
209	Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. , 0, , 295-316.		4
210	Targeting Phenotypically Tolerant <i>Mycobacterium tuberculosis</i> ., 0, , 317-360.		6
211	Tuberculosis Diagnostics: State of the Art and Future Directions. , 0, , 361-378.		2
212	Evolution of <i>Mycobacterium tuberculosis</i> : New Insights into Pathogenicity and Drug Resistance. , 0, , 495-515.		3
213	Acid-Fast Positive and Acid-Fast Negative <i>Mycobacterium tuberculosis</i> : The Koch Paradox. , 0, , 517-532.		2
214	Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions. , 0, , 533-539.		2
215	Epigenetic Phosphorylation Control of <i>Mycobacterium tuberculosis</i> Infection and Persistence. , 0, , 557-580.		1

The Minimal Unit of Infection:<i>Mycobacterium tuberculosis</i>in the Macrophage. , 0, , 635-652.

#	Article	IF	CITATIONS
217	Phenotypic Heterogeneity in <i>Mycobacterium tuberculosis</i> .,0,,671-697.		1
218	Pathology of Tuberculosis: How the Pathology of Human Tuberculosis Informs and Directs Animal Models. , 0, , 117-129.		1
219	Non-Human Primate Models of Tuberculosis. , 0, , 163-176.		Ο