
Hebin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3413662/publications.pdf Version: 2024-02-01

HEDINILI

#	Article	IF	CITATIONS
1	Double-quantum–zero-quantum 2D coherent spectroscopy reveals quantum coherence between collective states in an atomic vapor. Optics Letters, 2022, 47, 997.	3.3	6
2	Observations of ultrafast superfluorescent beatings in a cesium atomic vapor excited by femtosecond laser pulses. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 428, 127945.	2.1	6
3	Collective Resonance of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>D</mml:mi></mml:math> States in Rubidium Atoms Probed by Optical Two-Dimensional Coherent Spectroscopy. Physical Review Letters, 2022, 128, 103601.	7.8	5
4	Broadband optical two-dimensional coherent spectroscopy of a rubidium atomic vapor. Physical Review A, 2022, 105, .	2.5	2
5	Collapse of superradiant phase and Dicke phase transition at finite temperature in a hybrid optical-mechanical system. Physica Scripta, 2021, 96, 095801.	2.5	3
6	Optical two-dimensional coherent spectroscopy of many-body dipole–dipole interactions and correlations in atomic vapors. Journal of Chemical Physics, 2021, 154, 214301.	3.0	11
7	Finite-temperature Dicke phase transition and the collapse of superradiant phase in an optomechanical-atomic cavity. Results in Physics, 2021, 31, 104939.	4.1	0
8	Frequency-domain model of optical frequency-comb generation in optical resonators with second- and third-order nonlinearities. Physical Review A, 2020, 102, .	2.5	6
9	Machine learning enabled lineshape analysis in optical two-dimensional coherent spectroscopy. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1587.	2.1	6
10	Machine Learning Enabled Lineshape Analysis in Optical Two-Dimensional Coherent Spectroscopy. , 2020, , .		0
11	Optical 2D Coherent Spectroscopy of Many-body Interaction and Correlation in Atoms. , 2020, , .		0
12	Fast phase cycling in non-collinear optical two-dimensional coherent spectroscopy. Optics Letters, 2020, 45, 5852.	3.3	3
13	Ultrafast Carrier Dynamics of Dual Emissions from the Orthorhombic Phase in Methylammonium Lead Iodide Perovskites Revealed by Two-Dimensional Coherent Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 4625-4631.	4.6	9
14	Long range dipole-dipole interaction in low-density atomic vapors probed by double-quantum two-dimensional coherent spectroscopy. Optics Express, 2019, 27, 28891.	3.4	21
15	Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor. Optics Letters, 2019, 44, 2795.	3.3	32
16	Experimental observation of multi-atom Dicke states in an atomic vapor using optical 2D coherent spectroscopy. , 2019, , .		0
17	Straining effects in MoS ₂ monolayer on nanostructured substrates: temperature-dependent photoluminescence and exciton dynamics. Nanoscale, 2018, 10, 5717-5724.	5.6	54
	Intrinsic coherence time of trions in monolayer < mml:math		-

Intrinsic coherence time of trions in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoSe</mml:mi><mml:mn>2</mml:m2m></mml measured via two-dimensional coherent spectroscopy. Physical Review Materials, 2018, 2, .

Hebin Li

#	Article	IF	CITATIONS
19	Optical 2D coherent spectroscopy of valley dynamics in monolayer transition metal dichalcogenide. , 2018, , .		0
20	2D Coherent Spectroscopy of Electronic Transitions. Advances in Atomic, Molecular and Optical Physics, 2017, 66, 1-48.	2.3	6
21	Interpretation of optical three-dimensional coherent spectroscopy. Physical Review A, 2017, 96, .	2.5	7
22	Localization dynamics of excitons in disordered semiconductor quantum wells. Physical Review B, 2017, 95, .	3.2	10
23	Valley trion dynamics in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoSe</mml:mi><mml:mn>2Physical Review B, 2016, 94, .</mml:mn></mml:msub></mml:math 	l:n≇n₂⊳ <td>ml#asub></td>	ml#asub>
24	Probing dipole–dipole interaction in a rubidium gas via double-quantum 2D spectroscopy. Optics Letters, 2016, 41, 2954.	3.3	37
25	Quantifying spectral diffusion by the direct measurement of the correlation function for excitons in semiconductor quantum wells. Journal of the Optical Society of America B: Optical Physics, 2016, 33, C137.	2.1	15
26	Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches. Journal of Applied Physics, 2015, 117, 112804.	2.5	18
27	Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory. Journal of Physical Chemistry A, 2015, 119, 3936-3960.	2.5	19
28	Optical three-dimensional coherent spectroscopy. Proceedings of SPIE, 2014, , .	0.8	2
29	Optical two-dimensional coherent spectroscopy of semiconductor nanostructures. Proceedings of SPIE, 2014, , .	0.8	0
30	Quantum droplets of electrons and holes. Nature, 2014, 506, 471-475.	27.8	101
31	Coherent Excitonic Coupling in an Asymmetric Double InGaAs Quantum Well Arises from Many-Body Effects. Physical Review Letters, 2014, 112, 046402.	7.8	58
32	Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well. Physical Review Letters, 2014, 112, 097401.	7.8	44
33	Correlation and dephasing effects on the non-radiative coherence between bright excitons in an InAs QD ensemble measured with 2D spectroscopy. Solid State Communications, 2013, 163, 65-69.	1.9	25
34	Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Experiment. Journal of Physical Chemistry A, 2013, 117, 6279-6287.	2.5	23
35	Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy. Nature Communications, 2013, 4, 1390.	12.8	88
36	Linewidth Anisotropy of the Heavy Hole Exciton in (110)-Oriented GaAs Quantum Wells. , 2013, , .		0

Hebin Li

#	Article	IF	CITATIONS
37	Reflection optical two-dimensional Fourier-transform spectroscopy. Optics Express, 2013, 21, 1687.	3.4	13
38	Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells. Physical Review B, 2013, 88, .	3.2	23
39	Fifth-order nonlinear optical response of excitonic states in an InAs quantum dot ensemble measured with two-dimensional spectroscopy. Physical Review B, 2013, 87, .	3.2	43
40	Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy. Physical Review B, 2013, 87, .	3.2	50
41	Biexcitons in semiconductor quantum dot ensembles. Physica Status Solidi (B): Basic Research, 2013, 250, 1753-1759.	1.5	8
42	Optical Multidimensional Spectroscopy of Atomic Vapor. EPJ Web of Conferences, 2013, 41, 02010.	0.3	1
43	Determining the System Hamiltonian with Optical 3-D Spectroscopy. Optics and Photonics News, 2013, 24, 50.	0.5	0
44	Coupling in InGaAs Double QuantumWells Studied with 2D Fourier Transform Spectroscopy. , 2013, , .		1
45	Many-body interactions in GaAs quantum wells studied by pre-pulse 2DFT spectroscopy. , 2013, , .		0
46	Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor. Physical Review Letters, 2012, 108, 193201.	7.8	97
47	Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy. Physical Review B, 2012, 85, .	3.2	44
48	Optical 2-D Fourier Transform Spectroscopy of Excitons in Semiconductor Nanostructures. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 318-328.	2.9	40
49	Experimental observation of carrier-envelope-phase effects by multicycle pulses. Physical Review A, 2011, 83, .	2.5	23
50	Observation of picosecond UV pulses produced by coherent scattering of IR femtosecond pulses in atomic rubidium vapor. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 515.	2.1	9
51	Variable spectral filter based on optically saturated selective reflection. Laser Physics, 2011, 21, 153-157.	1.2	6
52	Phase dependent interference effects on atomic excitation. Optics Communications, 2011, 284, 2538-2541.	2.1	6
53	Observation of electromagnetically induced transparency in cesium molecules. Laser Physics, 2010, 20, 1725-1728.	1.2	14
54	Ultradispersive adaptive prism based on a coherently prepared atomic medium. Physical Review A, 2010, 81, .	2.5	42

Ηέβιν Li

#	Article	IF	CITATIONS
55	Selective reflection of a laser beam from a dilute rubidium vapor. Journal of Russian Laser Research, 2010, 31, 270-275.	0.6	13
56	Carrier-Envelope Phase Effect on Atomic Excitation by Few-Cycle rf Pulses. Physical Review Letters, 2010, 104, 103001.	7.8	34
57	Observation of picosecond superfluorescent pulses in rubidium atomic vapor pumped by 100-fs laser pulses. Physical Review A, 2010, 82, .	2.5	44
58	Resonance lineshapes in two-dimensional†Fourier transform spectroscopy. Optics Express, 2010, 18, 17699.	3.4	128
59	Excitation of atomic coherence using off-resonant strong laser pulses. Physical Review A, 2009, 79, .	2.5	45
60	Excitation dependence of resonance line self-broadening at different atomic densities. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 065203.	1.5	13
61	Intensity correlations in a coherently prepared Rb vapor in a magnetic field. Optics Communications, 2009, 282, 39-44.	2.1	7
62	Using phase dynamics in EIT to probe ground state relaxation in rubidium vapor. Journal of Modern Optics, 2009, 56, 975-979.	1.3	10
63	Electromagnetically induced transparency controlled by a microwave field. Physical Review A, 2009, 80, .	2.5	126
64	Improvement of spectral resolution by using the excitation dependence of dipole–dipole interaction in a dense atomic gas. Applied Physics B: Lasers and Optics, 2008, 91, 229-231.	2.2	17
65	Atomic noise spectra in nonlinear magneto-optical rotation in a rubidium vapor. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1702.	2.1	10
66	A model experiment for stand-off sensing. Journal of Modern Optics, 2008, 55, 3273-3281.	1.3	2
67	Dynamic control of EIT by changing optical phase. Journal of Modern Optics, 2008, 55, 3093-3099.	1.3	9
68	Optical imaging beyond the diffraction limit via dark states. Physical Review A, 2008, 78, .	2.5	71
69	An ultra-dispersive optically controlled atomic prism. , 2007, , .		0
70	Power spectra and correlations of intensity fluctuations in electromagnetically induced transparency. Journal of Modern Optics, 2007, 54, 2451-2457.	1.3	8
71	Near-infrared saturation spectroscopy of cesium molecules using a diode laser. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 723.	2.1	6
72	Electromagnetically induced transparency in Cs <inf>2</inf> molecules. , 2006, , .		0