Bertha GonzÃ;lez-Pedrajo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3413108/publications.pdf

Version: 2024-02-01

28 papers 1,535

394421 19 h-index 28 g-index

29 all docs 29 docs citations

29 times ranked

1531 citing authors

#	Article	IF	CITATIONS
1	CesL Regulates Type III Secretion Substrate Specificity of the Enteropathogenic E. coli Injectisome. Microorganisms, 2021, 9, 1047.	3.6	5
2	Antivirulence Activity of a Dietary Phytochemical: Hibiscus Acid Isolated from <i>Hibiscus sabdariffa</i> L. Reduces the Virulence of <i>Pseudomonas aeruginosa</i> in a Mouse Infection Model. Journal of Medicinal Food, 2021, 24, 934-943.	1.5	5
3	Anti-Virulence Properties of Plant Species: Correlation between In Vitro Activity and Efficacy in a Murine Model of Bacterial Infection. Microorganisms, 2021, 9, 2424.	3.6	3
4	Anti-Pathogenic Properties of the Combination of a T3SS Inhibitory Halogenated Pyrrolidone with C-30 Furanone. Molecules, 2021, 26, 7635.	3.8	9
5	The BPtpA protein from Burkholderia cenocepacia belongs to a new subclass of low molecular weight protein tyrosine phosphatases. Archives of Biochemistry and Biophysics, 2020, 681, 108277.	3.0	1
6	Repurposed anti-cancer drugs: the future for anti-infective therapy?. Expert Review of Anti-Infective Therapy, 2020, 18, 609-612.	4.4	23
7	Tetradecanoic Acids With Anti-Virulence Properties Increase the Pathogenicity of Pseudomonas aeruginosa in a Murine Cutaneous Infection Model. Frontiers in Cellular and Infection Microbiology, 2020, 10, 597517.	3.9	9
8	The race between drug introduction and appearance of microbial resistance. Current balance and alternative approaches. Current Opinion in Pharmacology, 2019, 48, 48-56.	3.5	22
9	Relationship Between Quorum Sensing and Secretion Systems. Frontiers in Microbiology, 2019, 10, 1100.	3.5	176
10	AiiM Lactonase Strongly Reduces Quorum Sensing Controlled Virulence Factors in Clinical Strains of Pseudomonas aeruginosa Isolated From Burned Patients. Frontiers in Microbiology, 2019, 10, 2657.	3.5	19
11	Novel insights into the mechanism of SepLâ€mediated control of effector secretion in enteropathogenic <i>Escherichia coli</i> . MicrobiologyOpen, 2018, 7, e00571.	3.0	29
12	Sexual dimorphism in bacterial infections. Biology of Sex Differences, 2018, 9, 27.	4.1	89
13	Functional Characterization of EscK (Orf4), a Sorting Platform Component of the Enteropathogenic Escherichia coli Injectisome. Journal of Bacteriology, 2017, 199, .	2.2	18
14	Type Three Secretion System in Attaching and Effacing Pathogens. Frontiers in Cellular and Infection Microbiology, 2016, 6, 129.	3.9	153
15	EscO, a Functional and Structural Analog of the Flagellar FliJ Protein, Is a Positive Regulator of EscN ATPase Activity of the Enteropathogenic Escherichia coli Injectisome. Journal of Bacteriology, 2014, 196, 2227-2241.	2.2	24
16	Role of Sex Steroid Hormones in Bacterial-Host Interactions. BioMed Research International, 2013, 2013, 1-10.	1.9	160
17	Role of EscP (Orf16) in Injectisome Biogenesis and Regulation of Type III Protein Secretion in Enteropathogenic Escherichia coli. Journal of Bacteriology, 2012, 194, 6029-6045.	2.2	32
18	The muramidase EtgA from enteropathogenic Escherichia coli is required for efficient type III secretion. Microbiology (United Kingdom), 2011, 157, 1145-1160.	1.8	35

#	Article	IF	CITATIONS
19	Roles of the extreme Nâ€terminal region of FliH for efficient localization of the FliH–FliI complex to the bacterial flagellar type III export apparatus. Molecular Microbiology, 2009, 74, 1471-1483.	2.5	70
20	Enzymatic characterization of the enteropathogenic Escherichia coli type III secretion ATPase EscN. Archives of Biochemistry and Biophysics, 2007, 468, 121-127.	3.0	46
21	The FliNâ°FliH Interaction Mediates Localization of Flagellar Export ATPase Flil to the C Ring Complexâ€. Biochemistry, 2006, 45, 11790-11798.	2.5	62
22	Interactions between C ring proteins and export apparatus components: a possible mechanism for facilitating type III protein export. Molecular Microbiology, 2006, 60, 984-998.	2.5	102
23	The ATPase Flil Can Interact with the Type III Flagellar Protein Export Apparatus in the Absence of Its Regulator, FliH. Journal of Bacteriology, 2003, 185, 3983-3988.	2.2	77
24	Interactions of FliJ with the Salmonella Type III Flagellar Export Apparatus. Journal of Bacteriology, 2003, 185, 5546-5554.	2.2	55
25	Interactions among Membrane and Soluble Components of the Flagellar Export Apparatus of <i>Salmonella</i> . Biochemistry, 2002, 41, 9516-9524.	2.5	57
26	Structural Properties of FliH, an ATPase Regulatory Component of the Salmonella Type III Flagellar Export Apparatus. Journal of Molecular Biology, 2002, 322, 281-290.	4.2	27
27	Molecular dissection of <i>Salmonella</i> FliH, a regulator of the ATPase Flil and the type III flagellar protein export pathway. Molecular Microbiology, 2002, 45, 967-982.	2.5	86
28	FliK, the protein responsible for flagellar hook length control in <i>Salmonella</i> , is exported during hook assembly. Molecular Microbiology, 1999, 34, 295-304.	2.5	141