## Michael G Olsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3413044/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Coalescence-induced phase separation of an oil in water emulsion under controlled shear and temperature conditions. Chemical Engineering Research and Design, 2022, 182, 517-524.                                                              | 2.7 | 1         |
| 2  | Coherent structure characteristics of the swirling flow during turbulent mixing in a multi-inlet vortex reactor. Physics of Fluids, 2021, 33, .                                                                                                | 1.6 | 2         |
| 3  | Droplet coalescence and phase separation in a topical ointment: Effects of fluid shear and temperature. International Journal of Pharmaceutics, 2020, 591, 119872.                                                                             | 2.6 | 10        |
| 4  | Jet breakup regimes in liquid–liquid Taylor vortex flow. International Journal of Multiphase Flow,<br>2020, 131, 103401.                                                                                                                       | 1.6 | 2         |
| 5  | Evolution of bubble size distribution, number density, and shape in semiâ€batch vertical gas–liquid<br>Taylor vortex flow. AICHE Journal, 2020, 66, e17003.                                                                                    | 1.8 | 2         |
| 6  | Droplet size distributions in liquid–liquid semi-batch Taylor vortex flow. AIP Advances, 2020, 10,<br>085316.                                                                                                                                  | 0.6 | 4         |
| 7  | A delayed detached eddy simulation model with low Reynolds number correction for transitional<br>swirling flow in a multi-inlet vortex nanoprecipitation reactor. Chemical Engineering Science, 2019,<br>193, 66-75.                           | 1.9 | 11        |
| 8  | Flow Regimes in Two-Phase Hexane/Water Semibatch Vertical Taylor Vortex Flow. Journal of Fluids<br>Engineering, Transactions of the ASME, 2019, 141, .                                                                                         | 0.8 | 5         |
| 9  | Experimental characterization of turbulent mixing performance using simultaneous stereoscopic particle image velocimetry and planar laser-induced fluorescence. Experiments in Fluids, 2019, 60, 1.                                            | 1.1 | 12        |
| 10 | Eulerian conditional statistics of turbulent flow in a macroscale multi-inlet vortex chemical reactor. Physics of Fluids, 2019, 31, 115106.                                                                                                    | 1.6 | 0         |
| 11 | Detailed experimental and numerical investigation of fluid–particle interactions of a fixed train of spherical particles inside a square duct. International Journal of Multiphase Flow, 2018, 103, 16-29.                                     | 1.6 | 5         |
| 12 | An intelligent cooling system and control model for improved engine thermal management. Applied<br>Thermal Engineering, 2018, 128, 253-263.                                                                                                    | 3.0 | 67        |
| 13 | Experimental investigation of the effect of ethyl alcohol surfactant on oxygen mass transfer and<br>bubble size distribution in an air-water multiphase Taylor-Couette vortex bioreactor. Chemical<br>Engineering Journal, 2017, 319, 288-296. | 6.6 | 34        |
| 14 | Turbulent mixing in the confined swirling flow of a multiâ€inlet vortex reactor. AICHE Journal, 2017, 63, 2409-2419.                                                                                                                           | 1.8 | 19        |
| 15 | Dynamic delayed detached eddy simulation of a multiâ€inlet vortex reactor. AICHE Journal, 2016, 62,<br>2570-2578.                                                                                                                              | 1.8 | 27        |
| 16 | Experimental measurement of oxygen mass transfer and bubble size distribution in an air–water<br>multiphase Taylor–Couette vortex bioreactor. Chemical Engineering Journal, 2015, 279, 286-296.                                                | 6.6 | 54        |
| 17 | A Batchelor Vortex Model for Mean Velocity of Turbulent Swirling Flow in a Macroscale Multi-Inlet<br>Vortex Reactor. Journal of Fluids Engineering, Transactions of the ASME, 2015, 137, .                                                     | 0.8 | 16        |
| 18 | Flow Characteristics in a Scaled-up Multi-inlet Vortex Nanoprecipitation Reactor. Industrial &<br>Engineering Chemistry Research, 2015, 54, 4512-4525.                                                                                         | 1.8 | 32        |

MICHAEL G OLSEN

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Large eddy simulation of passive scalar transport in a high Schmidt number turbulent incompressible wake with experimental validation. Chemical Engineering Science, 2015, 137, 862-874.                     | 1.9 | 5         |
| 20 | An adaptive model for gas–liquid mass transfer in a Taylor vortex reactor. International Journal of<br>Heat and Mass Transfer, 2015, 91, 433-445.                                                            | 2.5 | 17        |
| 21 | Investigation of Pseudo Turbulent Scalar Transport in Two Phase Fluid Flow and Passive Scalar<br>Mixing Using Simultaneous SPIV/PLIF. , 2014, , .                                                            |     | Ο         |
| 22 | Micromixing visualization and quantification in a microscale multi-inlet vortex nanoprecipitation reactor using confocal-based reactive micro laser-induced fluorescence. Biomicrofluidics, 2014, 8, 044102. | 1.2 | 6         |
| 23 | Effect of inlet conditions on the accuracy of large eddy simulations of a turbulent rectangular wake.<br>Chemical Engineering Journal, 2014, 250, 175-189.                                                   | 6.6 | 9         |
| 24 | Turbulence in Microchannels. , 2014, , 1-9.                                                                                                                                                                  |     | 0         |
| 25 | Measurements of turbulence in a microscale multi-inlet vortex nanoprecipitation reactor. Journal of Micromechanics and Microengineering, 2013, 23, 075005.                                                   | 1.5 | 23        |
| 26 | Turbulence measurements in a rectangular mesoscale confined impinging jets reactor. Experiments in<br>Fluids, 2012, 53, 1929-1941.                                                                           | 1.1 | 5         |
| 27 | Confocal imaging of laminar and turbulent mixing in a microscale multi-inlet vortex nanoprecipitation reactor. Applied Physics Letters, 2011, 99, 204103.                                                    | 1.5 | 17        |
| 28 | Thermal comparison between ceiling diffusers and fabric ductwork diffusers for green buildings.<br>Energy and Buildings, 2011, 43, 2973-2987.                                                                | 3.1 | 27        |
| 29 | Population, characteristics and kinematics of vortices in a confined rectangular jet with a co-flow.<br>Experiments in Fluids, 2011, 50, 1473-1493.                                                          | 1.1 | 8         |
| 30 | Validation of LES predictions for turbulent flow in a Confined Impinging Jets Reactor. Applied Mathematical Modelling, 2011, 35, 1591-1602.                                                                  | 2.2 | 37        |
| 31 | Investigation of the flow field in a three-dimensional Confined Impinging Jets Reactor by means of microPIV and DNS. Chemical Engineering Journal, 2011, 166, 294-305.                                       | 6.6 | 62        |
| 32 | Visualization of turbulent reactive mixing in a planar microscale confined impinging-jet reactor.<br>Journal of Micromechanics and Microengineering, 2011, 21, 115006.                                       | 1.5 | 8         |
| 33 | Investigation of passive scalar mixing in a confined rectangular wake using simultaneous PIV and PLIF.<br>Chemical Engineering Science, 2010, 65, 3372-3383.                                                 | 1.9 | 13        |
| 34 | Turbulent precipitation in micromixers: CFD simulation and flow field validation. Chemical Engineering Research and Design, 2010, 88, 1182-1193.                                                             | 2.7 | 39        |
| 35 | Depth of correlation reduction due to out-of-plane shear in microscopic particle image velocimetry.<br>Measurement Science and Technology, 2010, 21, 105406.                                                 | 1.4 | 11        |
| 36 | Directional dependence of depth of correlation due to in-plane fluid shear in microscopic particle image velocimetry. Measurement Science and Technology, 2009, 20, 015402.                                  | 1.4 | 18        |

MICHAEL G OLSEN

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Unsteady velocity field measurements at the outlet of an automotive supercharger using particle image velocimetry (PIV). Experimental Thermal and Fluid Science, 2009, 33, 405-423.         | 1.5 | 2         |
| 38 | A microscale multi-inlet vortex nanoprecipitation reactor: Turbulence measurement and simulation.<br>Applied Physics Letters, 2009, 94, 204104.                                             | 1.5 | 51        |
| 39 | Turbulence in a microscale planar confined impinging-jets reactor. Lab on A Chip, 2009, 9, 1110.                                                                                            | 3.1 | 45        |
| 40 | Conditional statistics of passive-scalar mixing in a confined wake flow. Physics of Fluids, 2008, 20, 077105.                                                                               | 1.6 | 3         |
| 41 | Random error due to Brownian motion in microscopic particle image velocimetry. Measurement Science and Technology, 2007, 18, 1963-1972.                                                     | 1.4 | 4         |
| 42 | Simultaneous velocity and concentration field measurements of passive-scalar mixing in a confined rectangular jet. Experiments in Fluids, 2007, 42, 847-862.                                | 1.1 | 35        |
| 43 | A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control. Journal of Microelectromechanical Systems, 2006, 15, 223-236.                                         | 1.7 | 61        |
| 44 | Aspect Ratio Effects on Turbulent and Transitional Flow in Rectangular Microchannels as Measured<br>With MicroPIV. Journal of Fluids Engineering, Transactions of the ASME, 2006, 128, 305. | 0.8 | 41        |
| 45 | Turbulent mixing in a confined rectangular wake. Chemical Engineering Science, 2006, 61, 6946-6962.                                                                                         | 1.9 | 27        |
| 46 | Examination of large-scale structures in turbulent microchannel flow. Experiments in Fluids, 2006, 40, 733-743.                                                                             | 1.1 | 21        |
| 47 | MicroPIV measurements of turbulent flow in square microchannels with hydraulic diameters from 2001¼m to 6401¼m. International Journal of Heat and Fluid Flow, 2006, 27, 123-134.            | 1.1 | 49        |
| 48 | The Depth of Correlation in Micro-PIV for High Numerical Aperture and Immersion Objectives. Journal of Fluids Engineering, Transactions of the ASME, 2006, 128, 883-886.                    | 0.8 | 50        |
| 49 | Conditional Statistics for Passive-Scalar Mixing in Confined Turbulent Shear Flows. , 2006, , .                                                                                             |     | 0         |
| 50 | Turbulent and transitional velocity measurements in a rectangular microchannel using microscopic particle image velocimetry. Experimental Thermal and Fluid Science, 2005, 29, 435-446.     | 1.5 | 52        |
| 51 | Reappearance of azimuthal waves in turbulent Taylor–Couette flow at large aspect ratio. Chemical<br>Engineering Science, 2005, 60, 5555-5568.                                               | 1.9 | 30        |
| 52 | Investigation of turbulent mixing in a confined planar-jet reactor. AICHE Journal, 2005, 51, 2649-2664.                                                                                     | 1.8 | 64        |
| 53 | Validation of an analytical solution for depth of correlation in microscopic particle image velocimetry. Measurement Science and Technology, 2004, 15, 318-327.                             | 1.4 | 89        |
| 54 | Planar velocity measurements in a weakly compressible mixing layer. Journal of Fluid Mechanics, 2003, 486, 51-77.                                                                           | 1.4 | 47        |

MICHAEL G OLSEN

| #  | Article                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Out-of-Plane Motion Effects in Microscopic Particle Image Velocimetry. Journal of Fluids Engineering,<br>Transactions of the ASME, 2003, 125, 895-901.        | 0.8 | 45        |
| 56 | Validation of Analytical Solution for Depth-of-Correlation in Microscopic Particle Image Velocimetry. , 2003, , 559.                                          |     | 0         |
| 57 | Stochastic Estimation of Large Structures in an Incompressible Mixing Layer. AIAA Journal, 2002, 40, 2431-2438.                                               | 1.5 | 22        |
| 58 | Measurement volume defined by peak-finding algorithms in cross-correlation particle image velocimetry. Measurement Science and Technology, 2001, 12, N14-N16. | 1.4 | 14        |
| 59 | Brownian motion and correlation in particle image velocimetry. Optics and Laser Technology, 2000, 32, 621-627.                                                | 2.2 | 110       |
| 60 | Planar velocity measurements in a weakly compressible mixing layer. , 1999, , .                                                                               |     | 7         |